Connect with us

Amazon

Use Block Kit when integrating Amazon Lex bots with Slack

If you’re integrating your Amazon Lex chatbots with Slack, chances are you’ll come across Block Kit. Block Kit is a UI framework for Slack apps. Like response cards, Block Kit can help simplify interactions with your users. It offers flexibility to format your bot messages with blocks, buttons, check boxes, date pickers, time pickers, select…

Published

on

[]If you’re integrating your Amazon Lex chatbots with Slack, chances are you’ll come across Block Kit. Block Kit is a UI framework for Slack apps. Like response cards, Block Kit can help simplify interactions with your users. It offers flexibility to format your bot messages with blocks, buttons, check boxes, date pickers, time pickers, select menus, and more.

[]Amazon Lex provides channel integration with messaging platforms such as Slack, Facebook, and Twilio. For instructions on integrating with Slack, see Integrating an Amazon Lex Bot with Slack. You can also update the interactivity and shortcuts feature with the request URL that Amazon Lex generated. If you want to use Block Kit and other Slack native components, you need a custom endpoint for the request URL.

[]This post describes a solution architecture with a custom endpoint and shows how to use Block Kit with your Amazon Lex bot. It also provides an AWS Serverless Application Model (AWS SAM) template implementing the architecture.

Solution overview

[]In the proposed architecture, we use Amazon API Gateway for the custom endpoint and an AWS Lambda function to process the events. We also introduce an Amazon Simple Queue Service (Amazon SQS) queue to invoke the Lambda function asynchronously. The rest of the architecture includes an Amazon Lex bot and another Lambda function used for initialization, validation, and fulfillment. We use Python for the provided code examples.

[]The following diagram illustrates the solution architecture.

Use Slack Block Kit with an Amazon Lex bot to post messages

[]You can use Block Kit to format messages you configured at build time within the Lambda function associated with an intent. The following example uses blocks to display available flowers to users.

[]Each time you want to display a message with blocks, the following steps are required:

  1. Build the block. Block Kit Builder helps you visually format your messages.
  2. Check whether the request originated from Slack before you post the block. This allows you to deploy your bots on multiple platforms without major changes.
  3. Use the chat_postMessage operation from the Slack WebClient to post them in Slack. You can use the following operation to post both text and blocks to Slack:

def postInSlack(user_id, message, messageType=’Plaintext’, bot_token=slacksecret[‘SLACK_BOT_TOKEN’]): try: # Call the chat.postMessage method using the WebClient if (messageType == ‘blocks’): result = slackClient.chat_postMessage( channel=user_id, token=bot_token, blocks=message ) else: result = slackClient.chat_postMessage( channel=user_id, token=bot_token, text=message ) except SlackApiError as e: logger.error(f”Error posting message: {e}”) []To illustrate those steps with the OrderFlowers bot, we show you how to use a date picker from Block Kit to re-prompt users for the pick-up date.

  1. First, you build the block in the format Slack expects: def get_pickup_date_block(): responseBlock = [ { “type”: “section”, “text”: { “type”: “mrkdwn”, “text”: “Pick a date to pick up your flower” }, “accessory”: { “type”: “datepicker”, “action_id”: “datepicker123”, “initial_date”: f'{datetime.date.today()}’, “placeholder”: { “type”: “plain_text”, “text”: “Select a date” } } } ]
  2. Then, you modify the validation code hook as follows. This checks if the request originated from Slack using the channel-type request attribute. if source == ‘DialogCodeHook’: slots = helper.get_slots(intent_request) validation_result = validate_order_flowers(flower_type, date, pickup_time) if not validation_result[‘isValid’]: slots[validation_result[‘violatedSlot’]] = None #Check if request from slack if intent_request[‘requestAttributes’] and ‘x-amz-lex:channel-type’ in intent_request[‘requestAttributes’] and intent_request[‘requestAttributes’][‘x-amz-lex:channel-type’] == ‘Slack’: blocks = [] channel_id = intent_request[‘userId’].split(‘:’)[2]
  3. If the violated slot is PickupDate, you post the block you defined earlier to Slack. Then, you ask Amazon Lex to elicit the slot with the returned validation message: if validation_result[‘violatedslot’] == ‘PickupDate’: blocks = get_pickup_date_block() helper.postInSlack (channel_id, blocks, ‘blocks’) return helper.elicit_slot( intent_request[‘sessionAttributes’], intent_request[‘currentIntent’][‘name’], slots, validation_result[‘violatedSlot’], validation_result[‘message’])

[]Outside of Slack, the user only receives the validation result message.

[]In Slack, the user receives both the pick-up date block and the validation result message.

[]You can use this approach to complement messages that you had configured at build time with Block Kit.

User interactions

[]Now that you know how to use blocks to post your bot messages, let’s go over how you handle users’ interactions with the blocks.

[]When a user interacts with an action block element, the following steps take place:

  1. Slack sends an HTTP request to API Gateway.
  2. API Gateway forwards the request to Amazon SQS.
  3. Amazon SQS receives the transformed request as a message, and invokes the Lambda function that processes the request.

[]The following diagram illustrates the interaction flow.

[]Let’s take a closer look at what happens at each step.

Slack sends an HTTP request to API Gateway

[]When a user chooses an action block element, Slack sends an HTTP post with the event details to the endpoint configured as request URL. The endpoint should reply to Slack with an HTTP 2xx response within 3 seconds. If not, Slack resends the same event. We decouple the ingestion and processing of events by using an Amazon SQS queue between API Gateway and the processing Lambda function. The queue allows you to reply to events with HTTP 200, queue them, and asynchronously process them. This prevents unnecessary retry events from flooding the custom endpoint.

API Gateway forwards the request to Amazon SQS

[]When API Gateway receives an event from Slack, it uses an integration request-mapping template to transform the request to the format Amazon SQS is expecting. Then it forwards the request to Amazon SQS.

Amazon SQS receives and processes the transformed request

[]When Amazon SQS receives the message, it initiates the process Lambda function and returns the 200 HTTP response to API Gateway that, in turn, returns the HTTP response to Slack.

Process requests

[]The Lambda function completes the following steps:

  1. Verify that the received request is from Slack.
  2. Forward the text value associated to the event to Amazon Lex.
  3. Post the Amazon Lex response to Slack.

[]In this section, we discuss each step in more detail.

Verify that the received request is from Slack

[]Use the signature module from slack_sdk to verify the requests. You can save and retrieve your signing secret from AWS Secrets Manager. For Slack’s recommendation on request verification, see Verifying requests from Slack.

Forward the text value associated to the event to Amazon Lex

[]If the request is from Slack, the Lambda function extracts the text value associated with the action type. Then it forwards the user input to Amazon Lex. See the following code:

actions = payload[“actions”] team_id = payload[“team”][“id”] user_id = payload[“user”][“id”] action_type = actions[0][“type”] if action_type == “button”: forwardToLex = actions[0][“value”] elif action_type == ‘datepicker’: forwardToLex = actions[0][‘selected_date’] else: forwardToLex = “None” forward_to_Lex(team_id, user_id, forwardToLex) []We use the Amazon Lex client post_text operation to forward the text to Amazon Lex. You can also store and retrieve the bot’s name, bot’s alias, and the channel ID from Secrets Manager. See the following code:

#Post event received from Slack to Lex and post Lex reply to #Slack def forward_to_Lex(team_id, user_id, forwardToLex): response = lexClient.post_text( botName=slacksecret[‘BOT_NAME’], botAlias=slacksecret[‘BOT_ALIAS’], userId=slacksecret[‘LEX_SLACK_CHANNEL_ID’]+”:”+ team_id+ “:” + user_id, inputText=forwardToLex )

Post the Amazon Lex response to Slack

[]Finally, we post the message from Amazon Lex to Slack:

postInSlack(user_id, response[‘message’]) []The following screenshot shows the response on Slack.

[]From the user’s perspectives, the experience is the following:

  1. The bot re-prompts the user for the pick-up date with a date picker.
  2. The user selects a date.
  3. The bot prompts the user for the pick-up time.

[]The messages that use Block Kit are seamlessly integrated to the original conversation flow with the Amazon Lex bot.

Walkthrough

[]In this part of the post, we walk through the deployment and configuration of the components you need to use Block Kit. We go over the following steps:

  1. Launch the prerequisite resources.
  2. Update the Slack request URL with the deployed API Gateway endpoint.
  3. Gather information for Secrets Manager.
  4. Populate the secret value.
  5. Update the Lambda function for Amazon Lex fulfillment initialization and validation.
  6. Update the listener Lambda function.
  7. Test the integration.

Prerequisites

[]For this walkthrough, you need the following:

Integrate Amazon Lex and Slack with a custom request URL

[]To create the resources, complete the following steps:

  1. Clone the repository https://github.com/aws-samples/amazon-lex-slack-block-kit:

git clone https://github.com/aws-samples/amazon-lex-slack-block-kit.git

  1. Build the application and run the guided deploy command:

cd amazon-lex-slack-block-kit sam build sam deploy –guided []

[]These steps deploy an AWS CloudFormation stack that launches the following resources:

  • An API Gateway endpoint integrated with an SQS queue
  • A Lambda function to listen to requests from Slack
  • A Lambda function for Amazon Lex fulfillment, initialization, and validation hooks
  • AWS Identity and Access Management (IAM) roles associated to the API and the Lambda functions
  • A Lambda layer with slack_sdk, urllib3, and common operations used by the two Lambda functions
  • A secret in Secrets Manager with the secret keys our code uses

Update the Slack request URL

[]To update the Slack request URL, complete the following steps:

  1. On the AWS CloudFormation console, navigate to the stack Outputs tab and copy the ListenSlackApi endpoint URL.
  2. Sign in to the Slack API console.
  3. Choose the app you integrated with Amazon Lex.
  4. Update the Interactivity & Shortcuts feature by replacing the value for Request URL with the ListenSlackApi endpoint URL.
  5. Choose Save Changes.

Gather information for Secrets Manager

[]To gather information for Secrets Manager, complete the following steps:

  1. On the Slack API console, under Settings, choose Basic Information.
  2. Note down the value for Signing Secret.
  3. Under Features, choose OAuth & Permissions.
  4. Note down the value for Bot User OAuth Token.
  5. On the Amazon Lex console, note the following:
    • Your bot’s name
    • Your bot’s alias
    • The last part of the two callback URLs that Amazon Lex generated when you created your Slack channel (for example, https://channels.lex.us-east-1.amazonaws.com/slack/webhook/value-to-record).

Populate the secret value

[]To populate the secret value, complete the following steps:

  1. On the Secrets Manager console, from the list of secrets, choose SLACK_LEX_BLOCK_KIT.
  2. Choose Retrieve secret value.
  3. Choose Edit.
  4. Replace the secret values as follows:
    1. SLACK_SIGNING_SECRET – The signing secret from Slack.
    2. SLACK_BOT_TOKEN – The bot user OAuth token from Slack.
    3. BOT_NAME – Your Amazon Lex bot’s name.
    4. BOT_ALIAS – Your Amazon Lex bot’s alias name.
    5. LEX_SLACK_CHANNEL_ID – The value you recorded from the callback URLs.
  5. Choose Save.

Update the Lambda fulfillment function and Lambda initialization and validation for your Amazon Lex bot

[]If you’re using the OrderFlowers bot, follow the instructions in Step 4: Add the Lambda Function as Code Hook (Console) to add the Lambda function amazon-lex-slack-block-kit-OrderFlowerFunction as code hooks for fulfillment, initialization, and validation.

[]If you’re not using the OrderFlowers bot, use the Lambda layer slack-lex-block that the stack created if your runtime is Python version 3.6 and later. The layer includes an operation postInSlack to post your blocks:

helper.postInSlack (channel_id, blocks, ‘blocks’) []You can use Slack Block Kit Builder to build your blocks.

Update the listener Lambda function

[]If you’re using the OrderFlowers bot, move to the next step to test the integration.

[]If you’re not using the OrderFlowers bot, update the Lambda function starting with amazon-lex-slack-block-kit-ListenFunction to process the actions your blocks used.

Test the integration

[]To test the integration, complete the following steps:

  1. Go back to the Slack team where you installed your application.
  2. In the navigation pane, in the Direct Messages section, choose your bot.

[]If you don’t see your bot, choose the plus icon (+) next to Direct Messages to search for it.

  1. Engage in a conversation with your Slack application.

[]Your bot now prompts you with the blocks you configured, as shown in the following example conversation.

Clean up

[]To avoid incurring future charges, delete the CloudFormation stack via the AWS CloudFormation console or the AWS Command Line Interface (AWS CLI):

aws cloudformation delete-stack –stack-name amazon-lex-slack-block-kit []You also need to delete the Amazon Lex bot resources that you created, the Amazon CloudWatch logs, and the Lambda layer that was created by the stack.

Conclusion

[]In this post, we showed how to use Block Kit to format Amazon Lex messages within Slack. We provided code examples to post blocks to Slack, listen to events from users’ interactions with the blocks’ elements, and process those events. We also walked you through deploying and configuring the necessary components to use Block Kit. Try the code examples and adapt them for your use case as you see fit.

About the Author

[]Anne Martine Augustin is an Application Consultant for AWS Professional Services based in Houston, TX. She is passionate about helping customers architect and build modern applications that accelerate their business outcomes. In her spare time, Martine enjoys spending time with friends and family, listening to audio books, and trying new foods.

Source

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published.

Amazon

AWS Week in Review – May 16, 2022

This post is part of our Week in Review series. Check back each week for a quick roundup of interesting news and announcements from AWS! I had been on the road for the last five weeks and attended many of the AWS Summits in Europe. It was great to talk to so many of you…

Published

on

By

This post is part of our Week in Review series. Check back each week for a quick roundup of interesting news and announcements from AWS!

I had been on the road for the last five weeks and attended many of the AWS Summits in Europe. It was great to talk to so many of you in person. The Serverless Developer Advocates are going around many of the AWS Summits with the Serverlesspresso booth. If you attend an event that has the booth, say “Hi ” to my colleagues, and have a coffee while asking all your serverless questions. You can find all the upcoming AWS Summits in the events section at the end of this post.

Last week’s launches
Here are some launches that got my attention during the previous week.

AWS Step Functions announced a new console experience to debug your state machine executions – Now you can opt-in to the new console experience of Step Functions, which makes it easier to analyze, debug, and optimize Standard Workflows. The new page allows you to inspect executions using three different views: graph, table, and event view, and add many new features to enhance the navigation and analysis of the executions. To learn about all the features and how to use them, read Ben’s blog post.

Example on how the Graph View looks

Example on how the Graph View looks

AWS Lambda now supports Node.js 16.x runtime – Now you can start using the Node.js 16 runtime when you create a new function or update your existing functions to use it. You can also use the new container image base that supports this runtime. To learn more about this launch, check Dan’s blog post.

AWS Amplify announces its Android library designed for Kotlin – The Amplify Android library has been rewritten for Kotlin, and now it is available in preview. This new library provides better debugging capacities and visibility into underlying state management. And it is also using the new AWS SDK for Kotlin that was released last year in preview. Read the What’s New post for more information.

Three new APIs for batch data retrieval in AWS IoT SiteWise – With this new launch AWS IoT SiteWise now supports batch data retrieval from multiple asset properties. The new APIs allow you to retrieve current values, historical values, and aggregated values. Read the What’s New post to learn how you can start using the new APIs.

AWS Secrets Manager now publishes secret usage metrics to Amazon CloudWatch – This launch is very useful to see the number of secrets in your account and set alarms for any unexpected increase or decrease in the number of secrets. Read the documentation on Monitoring Secrets Manager with Amazon CloudWatch for more information.

For a full list of AWS announcements, be sure to keep an eye on the What’s New at AWS page.

Other AWS News
Some other launches and news that you may have missed:

IBM signed a deal with AWS to offer its software portfolio as a service on AWS. This allows customers using AWS to access IBM software for automation, data and artificial intelligence, and security that is built on Red Hat OpenShift Service on AWS.

Podcast Charlas Técnicas de AWS – If you understand Spanish, this podcast is for you. Podcast Charlas Técnicas is one of the official AWS podcasts in Spanish. This week’s episode introduces you to Amazon DynamoDB and shares stories on how different customers use this database service. You can listen to all the episodes directly from your favorite podcast app or the podcast web page.

AWS Open Source News and Updates – Ricardo Sueiras, my colleague from the AWS Developer Relation team, runs this newsletter. It brings you all the latest open-source projects, posts, and more. Read edition #112 here.

Upcoming AWS Events
It’s AWS Summits season and here are some virtual and in-person events that might be close to you:

You can register for re:MARS to get fresh ideas on topics such as machine learning, automation, robotics, and space. The conference will be in person in Las Vegas, June 21–24.

That’s all for this week. Check back next Monday for another Week in Review!

— Marcia



Source

Continue Reading

Amazon

Personalize your machine translation results by using fuzzy matching with Amazon Translate

A person’s vernacular is part of the characteristics that make them unique. There are often countless different ways to express one specific idea. When a firm communicates with their customers, it’s critical that the message is delivered in a way that best represents the information they’re trying to convey. This becomes even more important when…

Published

on

By

A person’s vernacular is part of the characteristics that make them unique. There are often countless different ways to express one specific idea. When a firm communicates with their customers, it’s critical that the message is delivered in a way that best represents the information they’re trying to convey. This becomes even more important when it comes to professional language translation. Customers of translation systems and services expect accurate and highly customized outputs. To achieve this, they often reuse previous translation outputs—called translation memory (TM)—and compare them to new input text. In computer-assisted translation, this technique is known as fuzzy matching. The primary function of fuzzy matching is to assist the translator by speeding up the translation process. When an exact match can’t be found in the TM database for the text being translated, translation management systems (TMSs) often have the option to search for a match that is less than exact. Potential matches are provided to the translator as additional input for final translation. Translators who enhance their workflow with machine translation capabilities such as Amazon Translate often expect fuzzy matching data to be used as part of the automated translation solution.

In this post, you learn how to customize output from Amazon Translate according to translation memory fuzzy match quality scores.

Translation Quality Match

The XML Localization Interchange File Format (XLIFF) standard is often used as a data exchange format between TMSs and Amazon Translate. XLIFF files produced by TMSs include source and target text data along with match quality scores based on the available TM. These scores—usually expressed as a percentage—indicate how close the translation memory is to the text being translated.

Some customers with very strict requirements only want machine translation to be used when match quality scores are below a certain threshold. Beyond this threshold, they expect their own translation memory to take precedence. Translators often need to apply these preferences manually either within their TMS or by altering the text data. This flow is illustrated in the following diagram. The machine translation system processes the translation data—text and fuzzy match scores— which is then reviewed and manually edited by translators, based on their desired quality thresholds. Applying thresholds as part of the machine translation step allows you to remove these manual steps, which improves efficiency and optimizes cost.

Machine Translation Review Flow

Figure 1: Machine Translation Review Flow

The solution presented in this post allows you to enforce rules based on match quality score thresholds to drive whether a given input text should be machine translated by Amazon Translate or not. When not machine translated, the resulting text is left to the discretion of the translators reviewing the final output.

Solution Architecture

The solution architecture illustrated in Figure 2 leverages the following services:

  • Amazon Simple Storage Service – Amazon S3 buckets contain the following content:
    • Fuzzy match threshold configuration files
    • Source text to be translated
    • Amazon Translate input and output data locations
  • AWS Systems Manager – We use Parameter Store parameters to store match quality threshold configuration values
  • AWS Lambda – We use two Lambda functions:
    • One function preprocesses the quality match threshold configuration files and persists the data into Parameter Store
    • One function automatically creates the asynchronous translation jobs
  • Amazon Simple Queue Service – An Amazon SQS queue triggers the translation flow as a result of new files coming into the source bucket

Solution Architecture Diagram

Figure 2: Solution Architecture

You first set up quality thresholds for your translation jobs by editing a configuration file and uploading it into the fuzzy match threshold configuration S3 bucket. The following is a sample configuration in CSV format. We chose CSV for simplicity, although you can use any format. Each line represents a threshold to be applied to either a specific translation job or as a default value to any job.

default, 75 SourceMT-Test, 80

The specifications of the configuration file are as follows:

  • Column 1 should be populated with the name of the XLIFF file—without extension—provided to the Amazon Translate job as input data.
  • Column 2 should be populated with the quality match percentage threshold. For any score below this value, machine translation is used.
  • For all XLIFF files whose name doesn’t match any name listed in the configuration file, the default threshold is used—the line with the keyword default set in Column 1.

Auto-generated parameter in Systems Manager Parameter Store

Figure 3: Auto-generated parameter in Systems Manager Parameter Store

When a new file is uploaded, Amazon S3 triggers the Lambda function in charge of processing the parameters. This function reads and stores the threshold parameters into Parameter Store for future usage. Using Parameter Store avoids performing redundant Amazon S3 GET requests each time a new translation job is initiated. The sample configuration file produces the parameter tags shown in the following screenshot.

The job initialization Lambda function uses these parameters to preprocess the data prior to invoking Amazon Translate. We use an English-to-Spanish translation XLIFF input file, as shown in the following code. It contains the initial text to be translated, broken down into what is referred to as segments, represented in the source tags.

Consent Form CONSENT FORM FORMULARIO DE CONSENTIMIENTO Screening Visit: Screening Visit Selección

The source text has been pre-matched with the translation memory beforehand. The data contains potential translation alternatives—represented as tags—alongside a match quality attribute, expressed as a percentage. The business rule is as follows:

  • Segments received with alternative translations and a match quality below the threshold are untouched or empty. This signals to Amazon Translate that they must be translated.
  • Segments received with alternative translations with a match quality above the threshold are pre-populated with the suggested target text. Amazon Translate skips those segments.

Let’s assume the quality match threshold configured for this job is 80%. The first segment with 99% match quality isn’t machine translated, whereas the second segment is, because its match quality is below the defined threshold. In this configuration, Amazon Translate produces the following output:

Consent Form FORMULARIO DE CONSENTIMIENTO CONSENT FORM FORMULARIO DE CONSENTIMIENTO Screening Visit: Visita de selección Screening Visit Selección

In the second segment, Amazon Translate overwrites the target text initially suggested (Selección) with a higher quality translation: Visita de selección.

One possible extension to this use case could be to reuse the translated output and create our own translation memory. Amazon Translate supports customization of machine translation using translation memory thanks to the parallel data feature. Text segments previously machine translated due to their initial low-quality score could then be reused in new translation projects.

In the following sections, we walk you through the process of deploying and testing this solution. You use AWS CloudFormation scripts and data samples to launch an asynchronous translation job personalized with a configurable quality match threshold.

Prerequisites

For this walkthrough, you must have an AWS account. If you don’t have an account yet, you can create and activate one.

Launch AWS CloudFormation stack

  1. Choose Launch Stack:
  2. For Stack name, enter a name.
  3. For ConfigBucketName, enter the S3 bucket containing the threshold configuration files.
  4. For ParameterStoreRoot, enter the root path of the parameters created by the parameters processing Lambda function.
  5. For QueueName, enter the SQS queue that you create to post new file notifications from the source bucket to the job initialization Lambda function. This is the function that reads the configuration file.
  6. For SourceBucketName, enter the S3 bucket containing the XLIFF files to be translated. If you prefer to use a preexisting bucket, you need to change the value of the CreateSourceBucket parameter to No.
  7. For WorkingBucketName, enter the S3 bucket Amazon Translate uses for input and output data.
  8. Choose Next.

    Figure 4: CloudFormation stack details

  9. Optionally on the Stack Options page, add key names and values for the tags you may want to assign to the resources about to be created.
  10. Choose Next.
  11. On the Review page, select I acknowledge that this template might cause AWS CloudFormation to create IAM resources.
  12. Review the other settings, then choose Create stack.

AWS CloudFormation takes several minutes to create the resources on your behalf. You can watch the progress on the Events tab on the AWS CloudFormation console. When the stack has been created, you can see a CREATE_COMPLETE message in the Status column on the Overview tab.

Test the solution

Let’s go through a simple example.

  1. Download the following sample data.
  2. Unzip the content.

There should be two files: an .xlf file in XLIFF format, and a threshold configuration file with .cfg as the extension. The following is an excerpt of the XLIFF file.

English to French sample file extract

Figure 5: English to French sample file extract

  1. On the Amazon S3 console, upload the quality threshold configuration file into the configuration bucket you specified earlier.

The value set for test_En_to_Fr is 75%. You should be able to see the parameters on the Systems Manager console in the Parameter Store section.

  1. Still on the Amazon S3 console, upload the .xlf file into the S3 bucket you configured as source. Make sure the file is under a folder named translate (for example, /translate/test_En_to_Fr.xlf).

This starts the translation flow.

  1. Open the Amazon Translate console.

A new job should appear with a status of In Progress.

Auto-generated parameter in Systems Manager Parameter Store

Figure 6: In progress translation jobs on Amazon Translate console

  1. Once the job is complete, click into the job’s link and consult the output. All segments should have been translated.

All segments should have been translated. In the translated XLIFF file, look for segments with additional attributes named lscustom:match-quality, as shown in the following screenshot. These custom attributes identify segments where suggested translation was retained based on score.

Custom attributes identifying segments where suggested translation was retained based on score

Figure 7: Custom attributes identifying segments where suggested translation was retained based on score

These were derived from the translation memory according to the quality threshold. All other segments were machine translated.

You have now deployed and tested an automated asynchronous translation job assistant that enforces configurable translation memory match quality thresholds. Great job!

Cleanup

If you deployed the solution into your account, don’t forget to delete the CloudFormation stack to avoid any unexpected cost. You need to empty the S3 buckets manually beforehand.

Conclusion

In this post, you learned how to customize your Amazon Translate translation jobs based on standard XLIFF fuzzy matching quality metrics. With this solution, you can greatly reduce the manual labor involved in reviewing machine translated text while also optimizing your usage of Amazon Translate. You can also extend the solution with data ingestion automation and workflow orchestration capabilities, as described in Speed Up Translation Jobs with a Fully Automated Translation System Assistant.

About the Authors

Narcisse Zekpa is a Solutions Architect based in Boston. He helps customers in the Northeast U.S. accelerate their adoption of the AWS Cloud, by providing architectural guidelines, design innovative, and scalable solutions. When Narcisse is not building, he enjoys spending time with his family, traveling, cooking, and playing basketball.

Dimitri Restaino is a Solutions Architect at AWS, based out of Brooklyn, New York. He works primarily with Healthcare and Financial Services companies in the North East, helping to design innovative and creative solutions to best serve their customers. Coming from a software development background, he is excited by the new possibilities that serverless technology can bring to the world. Outside of work, he loves to hike and explore the NYC food scene.



Source

Continue Reading

Amazon

Enhance the caller experience with hints in Amazon Lex

We understand speech input better if we have some background on the topic of conversation. Consider a customer service agent at an auto parts wholesaler helping with orders. If the agent knows that the customer is looking for tires, they’re more likely to recognize responses (for example, “Michelin”) on the phone. Agents often pick up…

Published

on

By

We understand speech input better if we have some background on the topic of conversation. Consider a customer service agent at an auto parts wholesaler helping with orders. If the agent knows that the customer is looking for tires, they’re more likely to recognize responses (for example, “Michelin”) on the phone. Agents often pick up such clues or hints based on their domain knowledge and access to business intelligence dashboards. Amazon Lex now supports a hints capability to enhance the recognition of relevant phrases in a conversation. You can programmatically provide phrases as hints during a live interaction to influence the transcription of spoken input. Better recognition drives efficient conversations, reduces agent handling time, and ultimately increases customer satisfaction.

In this post, we review the runtime hints capability and use it to implement verification of callers based on their mother’s maiden name.

Overview of the runtime hints capability

You can provide a list of phrases or words to help your bot with the transcription of speech input. You can use these hints with built-in slot types such as first and last names, street names, city, state, and country. You can also configure these for your custom slot types.

You can use the capability to transcribe names that may be difficult to pronounce or understand. For example, in the following sample conversation, we use it to transcribe the name “Loreck.”

Conversation 1

IVR: Welcome to ACME bank. How can I help you today?

Caller: I want to check my account balance.

IVR: Sure. Which account should I pull up?

Caller: Checking

IVR: What is the account number?

Caller: 1111 2222 3333 4444

IVR: For verification purposes, what is your mother’s maiden name?

Caller: Loreck

IVR: Thank you. The balance on your checking account is 123 dollars.

Words provided as hints are preferred over other similar words. For example, in the second sample conversation, the runtime hint (“Smythe”) is selected over a more common transcription (“Smith”).

Conversation 2

IVR: Welcome to ACME bank. How can I help you today?

Caller: I want to check my account balance.

IVR: Sure. Which account should I pull up?

Caller: Checking

IVR: What is the account number?

Caller: 5555 6666 7777 8888

IVR: For verification purposes, what is your mother’s maiden name?

Caller: Smythe

IVR: Thank you. The balance on your checking account is 456 dollars.

If the name doesn’t match the runtime hint, you can fail the verification and route the call to an agent.

Conversation 3

IVR: Welcome to ACME bank. How can I help you today?

Caller: I want to check my account balance.

IVR: Sure. Which account should I pull up?

Caller: Savings

IVR: What is the account number?

Caller: 5555 6666 7777 8888

IVR: For verification purposes, what is your mother’s maiden name?

Caller: Jane

IVR: There is an issue with your account. For support, you will be forwarded to an agent.

Solution overview

Let’s review the overall architecture for the solution (see the following diagram):

  • We use an Amazon Lex bot integrated with an Amazon Connect contact flow to deliver the conversational experience.
  • We use a dialog codehook in the Amazon Lex bot to invoke an AWS Lambda function that provides the runtime hint at the previous turn of the conversation.
  • For the purposes of this post, the mother’s maiden name data used for authentication is stored in an Amazon DynamoDB table.
  • After the caller is authenticated, the control is passed to the bot to perform transactions (for example, check balance)

In addition to the Lambda function, you can also send runtime hints to Amazon Lex V2 using the PutSession, RecognizeText, RecognizeUtterance, or StartConversation operations. The runtime hints can be set at any point in the conversation and are persisted at every turn until cleared.

Deploy the sample Amazon Lex bot

To create the sample bot and configure the runtime phrase hints, perform the following steps. This creates an Amazon Lex bot called BankingBot, and one slot type (accountNumber).

  1. Download the Amazon Lex bot.
  2. On the Amazon Lex console, choose Actions, Import.
  3. Choose the file BankingBot.zip that you downloaded, and choose Import.
  4. Choose the bot BankingBot on the Amazon Lex console.
  5. Choose the language English (GB).
  6. Choose Build.
  7. Download the supporting Lambda code.
  8. On the Lambda console, create a new function and select Author from scratch.
  9. For Function name, enter BankingBotEnglish.
  10. For Runtime, choose Python 3.8.
  11. Choose Create function.
  12. In the Code source section, open lambda_function.py and delete the existing code.
  13. Download the function code and open it in a text editor.
  14. Copy the code and enter it into the empty function code field.
  15. Choose deploy.
  16. On the Amazon Lex console, select the bot BankingBot.
  17. Choose Deployment and then Aliases, then choose the alias TestBotAlias.
  18. On the Aliases page, choose Languages and choose English (GB).
  19. For Source, select the bot BankingBotEnglish.
  20. For Lambda version or alias, enter $LATEST.
  21. On the DynamoDB console, choose Create table.
  22. Provide the name as customerDatabase.
  23. Provide the partition key as accountNumber.
  24. Add an item with accountNumber: “1111222233334444” and mothersMaidenName “Loreck”.
  25. Add item with accountNumber: “5555666677778888” and mothersMaidenName “Smythe”.
  26. Make sure the Lambda function has permissions to read from the DynamoDB table customerDatabase.
  27. On the Amazon Connect console, choose Contact flows.
  28. In the Amazon Lex section, select your Amazon Lex bot and make it available for use in the Amazon Connect contact flow.
  29. Download the contact flow to integrate with the Amazon Lex bot.
  30. Choose the contact flow to load it into the application.
  31. Make sure the right bot is configured in the “Get Customer Input” block.
  32. Choose a queue in the “Set working queue” block.
  33. Add a phone number to the contact flow.
  34. Test the IVR flow by calling in to the phone number.

Test the solution

You can now call in to the Amazon Connect phone number and interact with the bot.

Conclusion

Runtime hints allow you to influence the transcription of words or phrases dynamically in the conversation. You can use business logic to identify the hints as the conversation evolves. Better recognition of the user input allows you to deliver an enhanced experience. You can configure runtime hints via the Lex V2 SDK. The capability is available in all AWS Regions where Amazon Lex operates in the English (Australia), English (UK), and English (US) locales.

To learn more, refer to runtime hints.

About the Authors

Kai Loreck is a professional services Amazon Connect consultant. He works on designing and implementing scalable customer experience solutions. In his spare time, he can be found playing sports, snowboarding, or hiking in the mountains.

Anubhav Mishra is a Product Manager with AWS. He spends his time understanding customers and designing product experiences to address their business challenges.

Sravan Bodapati is an Applied Science Manager at AWS Lex. He focuses on building cutting edge Artificial Intelligence and Machine Learning solutions for AWS customers in ASR and NLP space. In his spare time, he enjoys hiking, learning economics, watching TV shows and spending time with his family.



Source

Continue Reading

Trending

Copyright © 2021 Today's Digital.