Connect with us

Amazon

Customize Amazon Translate output to meet your domain and organization specific vocabulary

Amazon Translate is a neural machine translation service that delivers fast, high-quality, affordable, and customizable language translation. When you translate from one language to another, you want your machine translation to be accurate, fluent, and most importantly contextual. Customization is key in keeping your machine translation contextual. Amazon Translate provides multiple capabilities for customization to…

Published

on

Amazon Translate is a neural machine translation service that delivers fast, high-quality, affordable, and customizable language translation. When you translate from one language to another, you want your machine translation to be accurate, fluent, and most importantly contextual. Customization is key in keeping your machine translation contextual. Amazon Translate provides multiple capabilities for customization to achieve the best machine translation. One such capability is custom terminology. Custom terminology enables you to customize your translation output such that your domain and organization specific vocabulary such as brand names, character names, model names, and other unique content (named entities) are translated exactly the way you need. To use the custom terminology feature, you create a terminology using a terminology file in a CSV or TMX file format and specify this custom terminology as a parameter in an Amazon Translate real-time translation or asynchronous batch processing request.

Amazon Translate now supports multi-directional custom terminology. You no longer have to create multiple terminology CSV files with each one differing only in the first column to indicate the source language, include additional preprocessing logic to identify the dominant language, and choose the correct terminology file for the translation request. You can now use a single custom terminology for multiple source and target language combinations. Even when you set the source language to be detected automatically, Amazon Translate uses Amazon Comprehend to determine the dominant language of the source material, uses it as the source language, and translates the text using the terms specified in the custom terminology. For additional details on custom terminology, refer to Customizing Your Translations with Custom Terminology.

In this post, we walk you through the step-by-step process of how to use custom terminology and get a customized machine translated output securely.

Solution overview

To customize your translation for terms that are unique to your industry domain or organization, you define these terms in a terminology file in CSV or TMX file format. The terms within the custom terminology are considered case-sensitive, and Amazon Translate identifies an exact match between a terminology entry and a string in the source text when their case matches.

For our use case, we have our data in CSV format, and the name of the file is custom_terminology.csv. The data in the file should also be UTF-8 encoded. The following table summarizes the contents of the file.

en es fr hi ta
Echo Echo Echo Echo Echo
Show Show Show Show Show
Amazon Amazon Amazon Amazon Amazon
Alexa Alexa Alexa Alexa Alexa
AZ2 AZ2 AZ2 AZ2 AZ2

Import terminology

First, we import our multi-directional custom terminology using the custom_terminology.csv file. In the following sections, we show you how to import your terminology via the AWS Management Console, AWS Command Line Interface (AWS CLI), or with the Amazon Translate SDK (Python Boto3).

Amazon Translate console

To import the terminology via the console, complete the following steps:

  1. On the Amazon Translate console, in the navigation pane, choose Custom terminology.
  2. Choose Create terminology.

  1. For Name, enter an appropriate name, for example CustomTerminologyDemo.
  2. For Terminology file, upload the custom_terminology.csv file.
  3. For Terminology file data format, choose CSV, since we uploaded a CSV file.
  4. For Directionality, choose Multi-directional.
  5. For Encryption key, for the purpose of this post, we leave it as default, an AWS owned and managed key. You can select any appropriate key.

 Your data is always secure with Amazon Translate. It’s encrypted using an AWS owned encryption key using AWS Key Management Service (AWS KMS) by default. You can encrypt it using a key from your current account or use a key from a different account.

  1. Choose Create Terminology.

Your custom terminology is now listed on the Custom terminology page.

AWS CLI

The following AWS CLI commands are formatted for Unix, Linux, and macOS. For Windows, replace the backslash () Unix continuation character at the end of each line with a caret (^).

You can call the import-terminology AWS CLI command to create a custom terminology resource:

aws translate import-terminology –region us-east-1 –name CustomTerminologyDemo –description “Multi-Directional custom terminology in AWS Translate” –merge-strategy OVERWRITE –data-file fileb://custom_terminology.csv –terminology-data Format=CSV,Directionality=MULTI

You get a response like the following snippet:

{ “TerminologyProperties”: { “Name”: “CustomTerminologyDemo”, “Description”: “Multi-Directional custom terminology in AWS Translate”, “Arn”: “arn:aws:translate:us-east-1:123456789012:terminology/CustomTerminologyDemo/LATEST”, “Directionality”: “MULTI” “SourceLanguageCode”: “en”, “TargetLanguageCodes”: [ “hi”, “fr”, “ta”, “es” ], “SizeBytes”: 136, “TermCount”: 20, “CreatedAt”: “2021-10-12T15:29:51.294000-04:00”, “LastUpdatedAt”: “2021-10-12T15:29:51.458000-04:00” } }

You can use the list-terminologies command to list all the custom terminology created:

aws translate get-terminology –name CustomTerminologyDemo –-region us-east-1

The response looks like the following:

{ “TerminologyPropertiesList”: [ { “Name”: “CustomTerminologyDemo”, “Arn”: “arn:aws:translate:us-east-1:123456789012:terminology/CustomTerminologyDemo/LATEST”, “SourceLanguageCode”: “en”, “TargetLanguageCodes”: [ “hi”, “ta”, “fr”, “es” ], “SizeBytes”: 157, “TermCount”: 20, “CreatedAt”: “2021-10-12T15:29:51.294000-04:00”, “LastUpdatedAt”: “2021-10-12T15:29:51.458000-04:00”, “Directionality”: “MULTI”, “Format”: “CSV” } ] }

You can use the get-terminology command to get the details of a specific custom terminology resource:

aws translate get-terminology –name CustomTerminologyDemo –terminology-data-format CSV –region us-east-1

The response looks like the following:

{ “TerminologyProperties”: { “Name”: “CustomTerminologyDemo”, “Description”: “Custom terminology in AWS Translate”, “Arn”: “arn:aws:translate:us-east-1:123456789012:terminology/CustomTerminologyDemo/LATEST”, “Format”: “CSV”, “Directionality”: “MULTI” “SourceLanguageCode”: “en”, “TargetLanguageCodes”: [ “hi”, “fr”, “ta”, “es” ], “SizeBytes”: 136, “TermCount”: 20, “CreatedAt”: “2021-10-12T15:29:51.294000-04:00”, “LastUpdatedAt”: “2021-10-12T15:29:51.458000-04:00” }, “TerminologyDataLocation”: { “RepositoryType”: “S3”, “Location”: “https://aws-translate-terminology-prod-us-east-1.s3.us-east-1.amazonaws.com/123456789012/CustomTerminologyDemo/LATEST/c5c307b8-30f3-4704-8e39-ca4e9330ff6f/CSV/Custom_terminology.csv?X-Amz-Security-Token=1111222233334444aaaaeeeefffff&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20211022T150354Z&X-Amz-SignedHeaders=host&X-Amz-Expires=1800&X-Amz-Credential=ASIA1a2b3c4d5e6f%2F20211022%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=aaaabbbb11112222” } }

To delete a custom terminology resource, you can use the delete-terminology command:

aws translate delete-terminology –name CustomTerminologyDemo –region us-east-1

Amazon Translate SDK (Python Boto3)

The following Python 3 code creates a custom terminology, lists all the custom terminology, and uses the terminology resource part of the real-time translation call:

import boto3 import json translate = boto3.client(‘translate’) with open(‘custom_terminology.csv’, ‘rb’) as ct_file: translate.import_terminology( Name=’CustomTerminology_boto3′, MergeStrategy=’OVERWRITE’, Description=’Terminology for Demo through boto3′, TerminologyData={ ‘File’: ct_file.read(), ‘Format’: ‘CSV’ ‘Directionality’: ‘MULTI’ } ) response = translate.list_terminologies() terminology_names = [tag[“Name”] for tag in response[“TerminologyPropertiesList”]] print(str(terminology_names)) response = translate.get_terminology( Name=’CustomTerminology_boto3′, TerminologyDataFormat=’CSV’ ) print(“Name:{}”.format(response[“TerminologyProperties”][“Name”])) print(“Description:{}”.format(response[“TerminologyProperties”][“Description”])) print(“ARN:{}”.format(response[“TerminologyProperties”][“Arn”])) print(“Directionality:{}”.format(response[“TerminologyProperties”][“Directionality”])) SOURCE_TEXT = (“Amazon a présenté aujourd’hui Echo Show 15, un nouvel ajout à la famille Echo Show qui est conçu pour être le cœur numérique de votre maison”) OUTPUT_LANG_CODE = ‘en’ result = translate.translate_text( Text=SOURCE_TEXT, TerminologyNames=[‘CustomTerminology_boto3′], SourceLanguageCode=’auto’, TargetLanguageCode=OUTPUT_LANG_CODE ) print(“Translated Text:{}”.format(result[‘TranslatedText’]))

Running the Python code prints the following result:

python translate_custom_terminology.py [‘CustomTerminology_boto3’] Name: CustomTerminology_boto3 Description: Terminology for Demo through boto3 ARN: arn:aws:translate:us-east-1:123456789012:terminology/CustomTerminology_boto3/LATEST Directionality: MULTI Translated Text: Amazon today introduced Echo Show 15, a new addition to the Echo Show family that is designed to be the digital heart of your home.

Real-time translation using multi-directional custom terminology

In this section, we demonstrate two use cases using multi-directional custom terminology for real-time translation in Amazon Translate.

Scenario 1: Multi-directional custom terminology

For a basic demonstration of using multi-directional custom terminology with real-time translation, we use the following sample text in Spanish to be translated to French.

Amazon ha presentado hoy el Echo Show 15, una nueva incorporación a la familia Echo Show que está diseñada para ser el corazón digital de tu hogar. Con una pantalla Full HD de 15,6 pulgadas y 1080p, el Echo Show 15 puede fijarse en la pared o colocarse sobre un soporte compatible, ya sea en orientación vertical u horizontal, y está diseñado para ayudarte a mantenerte organizado, conectado y entretenido. El Echo Show 15 está fabricado con el procesador Amazon AZ2 Neural Edge de última generación, una pantalla de inicio rediseñada con más opciones de personalización, nuevas funcionalidades de personalización con ID Visual, y experiencias de Alexa totalmente nuevas.

On the Amazon Translate console, complete the following steps:

  1. Choose Spanish (es) as the Source language.
  2. Choose French (fr) as the Target Language.
  3. In the Additional settings section, turn Custom terminology
  4. Choose CustomTerminologyDemo as the terminology.
  5. Enter the provided sample text in the Source Language text area.

The following screenshot shows the translated text with custom terminology applied.

Spanish wasn’t the first column in the terminology file we uploaded, but with multi-directional terminology support, Amazon Translate was able to use the supplied terminology file to customize the translation.

Scenario 2: Automatically detect source language

In this use case, we demonstrate the capability in Amazon Translate to automatically detect the source language and use the supplied terminology file to customize the translation. We use the following sample text in French and translate it to Hindi:

Aujourd’hui, Amazon présente Echo Show 15, dernier-né de la gamme Echo Show, imaginé pour être le cœur numérique de votre domicile. Avec un écran Full HD 1080p de 15,6’’, Echo Show 15 peut être fixé au mur ou posé sur un support compatible, en orientation portrait ou paysage, et est conçu pour vous aider à rester organisé·e, connecté·e et diverti·e. Echo Show 15 est équipé du processeur Amazon AZ2 Neural Edge de nouvelle génération, d’un écran d’accueil repensé avec plus d’options et de nouvelles fonctionnalités de personnalisation grâce à l’identifiant facial, et bénéficie de toutes nouvelles expériences Alexa.

First let’s demonstrate the translation without custom terminology.

  1. Choose Source language as Auto (auto).
  2. Choose Hindi (hi) as the Target Language.
  3. Enter the provided text in the Source Language text area.

The following screenshot shows the translated text.

Words like Amazon, Echo, Show, AZ2, and Alexa have been translated into Devanagari script.

Let’s perform the same translation using our multi-directional custom terminology.

  1. Choose Source language as Auto (auto).
  2. Choose Hindi (hi) as the Target Language.
  3. In the Additional settings section, turn Custom terminology
  4. Choose CustomTerminologyDemo as the terminology.
  5. Enter the provided text in the Source Language text area.

The following screenshot shows the translated text with custom terminology applied.

The source language was automatically detected as French, and with the multi-directional custom terminology support, Amazon Translate was able to use the supplied terminology file to customize the translation and retain the Latin script for words like Amazon, Echo, Show, AZ2, and Alexa.

Conclusion

When you use custom terminology with translation requests, you can make sure that your unique content, such as brand names, character names, and model names, is translated exactly the way you need it, regardless of context and the Amazon Translate algorithm’s decision. In addition, with multi-directional custom terminology, the management overhead of maintaining multiple terminologies is drastically reduced, and you can use a single terminology to translate to and from a specific language. For more information about how to get the best translation quality when using custom terminology, see Best Practices.

About the Authors

Siva Rajamani is a Boston-based Enterprise Solutions Architect at AWS. He enjoys working closely with customers and supporting their digital transformation and AWS adoption journey. His core areas of focus are serverless, application integration, and security. Outside of work, he enjoys outdoors activities and watching documentaries.

Sudhanshu Malhotra is a Boston-based Enterprise Solutions Architect for AWS. He’s a technology enthusiast who enjoys helping customers find innovative solutions to complex business challenges. His core areas of focus are DevOps, machine learning, and security. When he’s not working with customers on their journey to the cloud, he enjoys reading, hiking, and exploring new cuisines.

Watson G. Srivathsan is the Sr. Product Manager for Amazon Translate, AWS’s natural language processing service. On weekends you will find him exploring the outdoors in the Pacific Northwest.



Source

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published.

Amazon

AWS Week in Review – May 16, 2022

This post is part of our Week in Review series. Check back each week for a quick roundup of interesting news and announcements from AWS! I had been on the road for the last five weeks and attended many of the AWS Summits in Europe. It was great to talk to so many of you…

Published

on

By

This post is part of our Week in Review series. Check back each week for a quick roundup of interesting news and announcements from AWS!

I had been on the road for the last five weeks and attended many of the AWS Summits in Europe. It was great to talk to so many of you in person. The Serverless Developer Advocates are going around many of the AWS Summits with the Serverlesspresso booth. If you attend an event that has the booth, say “Hi ” to my colleagues, and have a coffee while asking all your serverless questions. You can find all the upcoming AWS Summits in the events section at the end of this post.

Last week’s launches
Here are some launches that got my attention during the previous week.

AWS Step Functions announced a new console experience to debug your state machine executions – Now you can opt-in to the new console experience of Step Functions, which makes it easier to analyze, debug, and optimize Standard Workflows. The new page allows you to inspect executions using three different views: graph, table, and event view, and add many new features to enhance the navigation and analysis of the executions. To learn about all the features and how to use them, read Ben’s blog post.

Example on how the Graph View looks

Example on how the Graph View looks

AWS Lambda now supports Node.js 16.x runtime – Now you can start using the Node.js 16 runtime when you create a new function or update your existing functions to use it. You can also use the new container image base that supports this runtime. To learn more about this launch, check Dan’s blog post.

AWS Amplify announces its Android library designed for Kotlin – The Amplify Android library has been rewritten for Kotlin, and now it is available in preview. This new library provides better debugging capacities and visibility into underlying state management. And it is also using the new AWS SDK for Kotlin that was released last year in preview. Read the What’s New post for more information.

Three new APIs for batch data retrieval in AWS IoT SiteWise – With this new launch AWS IoT SiteWise now supports batch data retrieval from multiple asset properties. The new APIs allow you to retrieve current values, historical values, and aggregated values. Read the What’s New post to learn how you can start using the new APIs.

AWS Secrets Manager now publishes secret usage metrics to Amazon CloudWatch – This launch is very useful to see the number of secrets in your account and set alarms for any unexpected increase or decrease in the number of secrets. Read the documentation on Monitoring Secrets Manager with Amazon CloudWatch for more information.

For a full list of AWS announcements, be sure to keep an eye on the What’s New at AWS page.

Other AWS News
Some other launches and news that you may have missed:

IBM signed a deal with AWS to offer its software portfolio as a service on AWS. This allows customers using AWS to access IBM software for automation, data and artificial intelligence, and security that is built on Red Hat OpenShift Service on AWS.

Podcast Charlas Técnicas de AWS – If you understand Spanish, this podcast is for you. Podcast Charlas Técnicas is one of the official AWS podcasts in Spanish. This week’s episode introduces you to Amazon DynamoDB and shares stories on how different customers use this database service. You can listen to all the episodes directly from your favorite podcast app or the podcast web page.

AWS Open Source News and Updates – Ricardo Sueiras, my colleague from the AWS Developer Relation team, runs this newsletter. It brings you all the latest open-source projects, posts, and more. Read edition #112 here.

Upcoming AWS Events
It’s AWS Summits season and here are some virtual and in-person events that might be close to you:

You can register for re:MARS to get fresh ideas on topics such as machine learning, automation, robotics, and space. The conference will be in person in Las Vegas, June 21–24.

That’s all for this week. Check back next Monday for another Week in Review!

— Marcia



Source

Continue Reading

Amazon

Personalize your machine translation results by using fuzzy matching with Amazon Translate

A person’s vernacular is part of the characteristics that make them unique. There are often countless different ways to express one specific idea. When a firm communicates with their customers, it’s critical that the message is delivered in a way that best represents the information they’re trying to convey. This becomes even more important when…

Published

on

By

A person’s vernacular is part of the characteristics that make them unique. There are often countless different ways to express one specific idea. When a firm communicates with their customers, it’s critical that the message is delivered in a way that best represents the information they’re trying to convey. This becomes even more important when it comes to professional language translation. Customers of translation systems and services expect accurate and highly customized outputs. To achieve this, they often reuse previous translation outputs—called translation memory (TM)—and compare them to new input text. In computer-assisted translation, this technique is known as fuzzy matching. The primary function of fuzzy matching is to assist the translator by speeding up the translation process. When an exact match can’t be found in the TM database for the text being translated, translation management systems (TMSs) often have the option to search for a match that is less than exact. Potential matches are provided to the translator as additional input for final translation. Translators who enhance their workflow with machine translation capabilities such as Amazon Translate often expect fuzzy matching data to be used as part of the automated translation solution.

In this post, you learn how to customize output from Amazon Translate according to translation memory fuzzy match quality scores.

Translation Quality Match

The XML Localization Interchange File Format (XLIFF) standard is often used as a data exchange format between TMSs and Amazon Translate. XLIFF files produced by TMSs include source and target text data along with match quality scores based on the available TM. These scores—usually expressed as a percentage—indicate how close the translation memory is to the text being translated.

Some customers with very strict requirements only want machine translation to be used when match quality scores are below a certain threshold. Beyond this threshold, they expect their own translation memory to take precedence. Translators often need to apply these preferences manually either within their TMS or by altering the text data. This flow is illustrated in the following diagram. The machine translation system processes the translation data—text and fuzzy match scores— which is then reviewed and manually edited by translators, based on their desired quality thresholds. Applying thresholds as part of the machine translation step allows you to remove these manual steps, which improves efficiency and optimizes cost.

Machine Translation Review Flow

Figure 1: Machine Translation Review Flow

The solution presented in this post allows you to enforce rules based on match quality score thresholds to drive whether a given input text should be machine translated by Amazon Translate or not. When not machine translated, the resulting text is left to the discretion of the translators reviewing the final output.

Solution Architecture

The solution architecture illustrated in Figure 2 leverages the following services:

  • Amazon Simple Storage Service – Amazon S3 buckets contain the following content:
    • Fuzzy match threshold configuration files
    • Source text to be translated
    • Amazon Translate input and output data locations
  • AWS Systems Manager – We use Parameter Store parameters to store match quality threshold configuration values
  • AWS Lambda – We use two Lambda functions:
    • One function preprocesses the quality match threshold configuration files and persists the data into Parameter Store
    • One function automatically creates the asynchronous translation jobs
  • Amazon Simple Queue Service – An Amazon SQS queue triggers the translation flow as a result of new files coming into the source bucket

Solution Architecture Diagram

Figure 2: Solution Architecture

You first set up quality thresholds for your translation jobs by editing a configuration file and uploading it into the fuzzy match threshold configuration S3 bucket. The following is a sample configuration in CSV format. We chose CSV for simplicity, although you can use any format. Each line represents a threshold to be applied to either a specific translation job or as a default value to any job.

default, 75 SourceMT-Test, 80

The specifications of the configuration file are as follows:

  • Column 1 should be populated with the name of the XLIFF file—without extension—provided to the Amazon Translate job as input data.
  • Column 2 should be populated with the quality match percentage threshold. For any score below this value, machine translation is used.
  • For all XLIFF files whose name doesn’t match any name listed in the configuration file, the default threshold is used—the line with the keyword default set in Column 1.

Auto-generated parameter in Systems Manager Parameter Store

Figure 3: Auto-generated parameter in Systems Manager Parameter Store

When a new file is uploaded, Amazon S3 triggers the Lambda function in charge of processing the parameters. This function reads and stores the threshold parameters into Parameter Store for future usage. Using Parameter Store avoids performing redundant Amazon S3 GET requests each time a new translation job is initiated. The sample configuration file produces the parameter tags shown in the following screenshot.

The job initialization Lambda function uses these parameters to preprocess the data prior to invoking Amazon Translate. We use an English-to-Spanish translation XLIFF input file, as shown in the following code. It contains the initial text to be translated, broken down into what is referred to as segments, represented in the source tags.

Consent Form CONSENT FORM FORMULARIO DE CONSENTIMIENTO Screening Visit: Screening Visit Selección

The source text has been pre-matched with the translation memory beforehand. The data contains potential translation alternatives—represented as tags—alongside a match quality attribute, expressed as a percentage. The business rule is as follows:

  • Segments received with alternative translations and a match quality below the threshold are untouched or empty. This signals to Amazon Translate that they must be translated.
  • Segments received with alternative translations with a match quality above the threshold are pre-populated with the suggested target text. Amazon Translate skips those segments.

Let’s assume the quality match threshold configured for this job is 80%. The first segment with 99% match quality isn’t machine translated, whereas the second segment is, because its match quality is below the defined threshold. In this configuration, Amazon Translate produces the following output:

Consent Form FORMULARIO DE CONSENTIMIENTO CONSENT FORM FORMULARIO DE CONSENTIMIENTO Screening Visit: Visita de selección Screening Visit Selección

In the second segment, Amazon Translate overwrites the target text initially suggested (Selección) with a higher quality translation: Visita de selección.

One possible extension to this use case could be to reuse the translated output and create our own translation memory. Amazon Translate supports customization of machine translation using translation memory thanks to the parallel data feature. Text segments previously machine translated due to their initial low-quality score could then be reused in new translation projects.

In the following sections, we walk you through the process of deploying and testing this solution. You use AWS CloudFormation scripts and data samples to launch an asynchronous translation job personalized with a configurable quality match threshold.

Prerequisites

For this walkthrough, you must have an AWS account. If you don’t have an account yet, you can create and activate one.

Launch AWS CloudFormation stack

  1. Choose Launch Stack:
  2. For Stack name, enter a name.
  3. For ConfigBucketName, enter the S3 bucket containing the threshold configuration files.
  4. For ParameterStoreRoot, enter the root path of the parameters created by the parameters processing Lambda function.
  5. For QueueName, enter the SQS queue that you create to post new file notifications from the source bucket to the job initialization Lambda function. This is the function that reads the configuration file.
  6. For SourceBucketName, enter the S3 bucket containing the XLIFF files to be translated. If you prefer to use a preexisting bucket, you need to change the value of the CreateSourceBucket parameter to No.
  7. For WorkingBucketName, enter the S3 bucket Amazon Translate uses for input and output data.
  8. Choose Next.

    Figure 4: CloudFormation stack details

  9. Optionally on the Stack Options page, add key names and values for the tags you may want to assign to the resources about to be created.
  10. Choose Next.
  11. On the Review page, select I acknowledge that this template might cause AWS CloudFormation to create IAM resources.
  12. Review the other settings, then choose Create stack.

AWS CloudFormation takes several minutes to create the resources on your behalf. You can watch the progress on the Events tab on the AWS CloudFormation console. When the stack has been created, you can see a CREATE_COMPLETE message in the Status column on the Overview tab.

Test the solution

Let’s go through a simple example.

  1. Download the following sample data.
  2. Unzip the content.

There should be two files: an .xlf file in XLIFF format, and a threshold configuration file with .cfg as the extension. The following is an excerpt of the XLIFF file.

English to French sample file extract

Figure 5: English to French sample file extract

  1. On the Amazon S3 console, upload the quality threshold configuration file into the configuration bucket you specified earlier.

The value set for test_En_to_Fr is 75%. You should be able to see the parameters on the Systems Manager console in the Parameter Store section.

  1. Still on the Amazon S3 console, upload the .xlf file into the S3 bucket you configured as source. Make sure the file is under a folder named translate (for example, /translate/test_En_to_Fr.xlf).

This starts the translation flow.

  1. Open the Amazon Translate console.

A new job should appear with a status of In Progress.

Auto-generated parameter in Systems Manager Parameter Store

Figure 6: In progress translation jobs on Amazon Translate console

  1. Once the job is complete, click into the job’s link and consult the output. All segments should have been translated.

All segments should have been translated. In the translated XLIFF file, look for segments with additional attributes named lscustom:match-quality, as shown in the following screenshot. These custom attributes identify segments where suggested translation was retained based on score.

Custom attributes identifying segments where suggested translation was retained based on score

Figure 7: Custom attributes identifying segments where suggested translation was retained based on score

These were derived from the translation memory according to the quality threshold. All other segments were machine translated.

You have now deployed and tested an automated asynchronous translation job assistant that enforces configurable translation memory match quality thresholds. Great job!

Cleanup

If you deployed the solution into your account, don’t forget to delete the CloudFormation stack to avoid any unexpected cost. You need to empty the S3 buckets manually beforehand.

Conclusion

In this post, you learned how to customize your Amazon Translate translation jobs based on standard XLIFF fuzzy matching quality metrics. With this solution, you can greatly reduce the manual labor involved in reviewing machine translated text while also optimizing your usage of Amazon Translate. You can also extend the solution with data ingestion automation and workflow orchestration capabilities, as described in Speed Up Translation Jobs with a Fully Automated Translation System Assistant.

About the Authors

Narcisse Zekpa is a Solutions Architect based in Boston. He helps customers in the Northeast U.S. accelerate their adoption of the AWS Cloud, by providing architectural guidelines, design innovative, and scalable solutions. When Narcisse is not building, he enjoys spending time with his family, traveling, cooking, and playing basketball.

Dimitri Restaino is a Solutions Architect at AWS, based out of Brooklyn, New York. He works primarily with Healthcare and Financial Services companies in the North East, helping to design innovative and creative solutions to best serve their customers. Coming from a software development background, he is excited by the new possibilities that serverless technology can bring to the world. Outside of work, he loves to hike and explore the NYC food scene.



Source

Continue Reading

Amazon

Enhance the caller experience with hints in Amazon Lex

We understand speech input better if we have some background on the topic of conversation. Consider a customer service agent at an auto parts wholesaler helping with orders. If the agent knows that the customer is looking for tires, they’re more likely to recognize responses (for example, “Michelin”) on the phone. Agents often pick up…

Published

on

By

We understand speech input better if we have some background on the topic of conversation. Consider a customer service agent at an auto parts wholesaler helping with orders. If the agent knows that the customer is looking for tires, they’re more likely to recognize responses (for example, “Michelin”) on the phone. Agents often pick up such clues or hints based on their domain knowledge and access to business intelligence dashboards. Amazon Lex now supports a hints capability to enhance the recognition of relevant phrases in a conversation. You can programmatically provide phrases as hints during a live interaction to influence the transcription of spoken input. Better recognition drives efficient conversations, reduces agent handling time, and ultimately increases customer satisfaction.

In this post, we review the runtime hints capability and use it to implement verification of callers based on their mother’s maiden name.

Overview of the runtime hints capability

You can provide a list of phrases or words to help your bot with the transcription of speech input. You can use these hints with built-in slot types such as first and last names, street names, city, state, and country. You can also configure these for your custom slot types.

You can use the capability to transcribe names that may be difficult to pronounce or understand. For example, in the following sample conversation, we use it to transcribe the name “Loreck.”

Conversation 1

IVR: Welcome to ACME bank. How can I help you today?

Caller: I want to check my account balance.

IVR: Sure. Which account should I pull up?

Caller: Checking

IVR: What is the account number?

Caller: 1111 2222 3333 4444

IVR: For verification purposes, what is your mother’s maiden name?

Caller: Loreck

IVR: Thank you. The balance on your checking account is 123 dollars.

Words provided as hints are preferred over other similar words. For example, in the second sample conversation, the runtime hint (“Smythe”) is selected over a more common transcription (“Smith”).

Conversation 2

IVR: Welcome to ACME bank. How can I help you today?

Caller: I want to check my account balance.

IVR: Sure. Which account should I pull up?

Caller: Checking

IVR: What is the account number?

Caller: 5555 6666 7777 8888

IVR: For verification purposes, what is your mother’s maiden name?

Caller: Smythe

IVR: Thank you. The balance on your checking account is 456 dollars.

If the name doesn’t match the runtime hint, you can fail the verification and route the call to an agent.

Conversation 3

IVR: Welcome to ACME bank. How can I help you today?

Caller: I want to check my account balance.

IVR: Sure. Which account should I pull up?

Caller: Savings

IVR: What is the account number?

Caller: 5555 6666 7777 8888

IVR: For verification purposes, what is your mother’s maiden name?

Caller: Jane

IVR: There is an issue with your account. For support, you will be forwarded to an agent.

Solution overview

Let’s review the overall architecture for the solution (see the following diagram):

  • We use an Amazon Lex bot integrated with an Amazon Connect contact flow to deliver the conversational experience.
  • We use a dialog codehook in the Amazon Lex bot to invoke an AWS Lambda function that provides the runtime hint at the previous turn of the conversation.
  • For the purposes of this post, the mother’s maiden name data used for authentication is stored in an Amazon DynamoDB table.
  • After the caller is authenticated, the control is passed to the bot to perform transactions (for example, check balance)

In addition to the Lambda function, you can also send runtime hints to Amazon Lex V2 using the PutSession, RecognizeText, RecognizeUtterance, or StartConversation operations. The runtime hints can be set at any point in the conversation and are persisted at every turn until cleared.

Deploy the sample Amazon Lex bot

To create the sample bot and configure the runtime phrase hints, perform the following steps. This creates an Amazon Lex bot called BankingBot, and one slot type (accountNumber).

  1. Download the Amazon Lex bot.
  2. On the Amazon Lex console, choose Actions, Import.
  3. Choose the file BankingBot.zip that you downloaded, and choose Import.
  4. Choose the bot BankingBot on the Amazon Lex console.
  5. Choose the language English (GB).
  6. Choose Build.
  7. Download the supporting Lambda code.
  8. On the Lambda console, create a new function and select Author from scratch.
  9. For Function name, enter BankingBotEnglish.
  10. For Runtime, choose Python 3.8.
  11. Choose Create function.
  12. In the Code source section, open lambda_function.py and delete the existing code.
  13. Download the function code and open it in a text editor.
  14. Copy the code and enter it into the empty function code field.
  15. Choose deploy.
  16. On the Amazon Lex console, select the bot BankingBot.
  17. Choose Deployment and then Aliases, then choose the alias TestBotAlias.
  18. On the Aliases page, choose Languages and choose English (GB).
  19. For Source, select the bot BankingBotEnglish.
  20. For Lambda version or alias, enter $LATEST.
  21. On the DynamoDB console, choose Create table.
  22. Provide the name as customerDatabase.
  23. Provide the partition key as accountNumber.
  24. Add an item with accountNumber: “1111222233334444” and mothersMaidenName “Loreck”.
  25. Add item with accountNumber: “5555666677778888” and mothersMaidenName “Smythe”.
  26. Make sure the Lambda function has permissions to read from the DynamoDB table customerDatabase.
  27. On the Amazon Connect console, choose Contact flows.
  28. In the Amazon Lex section, select your Amazon Lex bot and make it available for use in the Amazon Connect contact flow.
  29. Download the contact flow to integrate with the Amazon Lex bot.
  30. Choose the contact flow to load it into the application.
  31. Make sure the right bot is configured in the “Get Customer Input” block.
  32. Choose a queue in the “Set working queue” block.
  33. Add a phone number to the contact flow.
  34. Test the IVR flow by calling in to the phone number.

Test the solution

You can now call in to the Amazon Connect phone number and interact with the bot.

Conclusion

Runtime hints allow you to influence the transcription of words or phrases dynamically in the conversation. You can use business logic to identify the hints as the conversation evolves. Better recognition of the user input allows you to deliver an enhanced experience. You can configure runtime hints via the Lex V2 SDK. The capability is available in all AWS Regions where Amazon Lex operates in the English (Australia), English (UK), and English (US) locales.

To learn more, refer to runtime hints.

About the Authors

Kai Loreck is a professional services Amazon Connect consultant. He works on designing and implementing scalable customer experience solutions. In his spare time, he can be found playing sports, snowboarding, or hiking in the mountains.

Anubhav Mishra is a Product Manager with AWS. He spends his time understanding customers and designing product experiences to address their business challenges.

Sravan Bodapati is an Applied Science Manager at AWS Lex. He focuses on building cutting edge Artificial Intelligence and Machine Learning solutions for AWS customers in ASR and NLP space. In his spare time, he enjoys hiking, learning economics, watching TV shows and spending time with his family.



Source

Continue Reading

Trending

Copyright © 2021 Today's Digital.