AWS AI/ML Community attendee guides to AWS re:Invent 2021
The AWS AI/ML Community has compiled a series of session guides to AWS re:Invent 2021 to help you get the most out of re:Invent this year. They covered four distinct categories relevant to AI/ML. With a number of our guide authors attending re:Invent virtually, you will find a balance between virtually accessible sessions and sessions…
The AWS AI/ML Community has compiled a series of session guides to AWS re:Invent 2021 to help you get the most out of re:Invent this year. They covered four distinct categories relevant to AI/ML. With a number of our guide authors attending re:Invent virtually, you will find a balance between virtually accessible sessions and sessions available in-person.
The AWS AI/ML Community is a vibrant group of developers, data scientists, researchers, and business decision-makers that dive deep into artificial intelligence and machine learning (ML) concepts, contribute with real-world experiences, and collaborate on building projects together.
Community guides for developers new to machine learning
AWS ML Community Builder Phil Basford’s must-see sessions. For those interested in MLOps, ML architecture, edge computing, or data analytics, see Phil’s guide and his tips on how to have fun in Vegas and at home for those attending virtually.
AWS ML Hero Kesha Williams’s Machine Learning Attendee Guide 2021. The official AWS Hero guide from Kesha dives deep across all session categories. Check this guide out for a full walkthrough of how to build your schedule, and the ultimate deep dive into Kesha’s ML session picks.
Whether you’re attending in-person or virtually this year, we hope these recommendations and advice from the AWS ML Community help you make the most of your re:Invent experience. Have a great re:Invent!
About the Author
Paxton Hall is a Marketing Program Manager for the AWS AI/ML Community on the AI/ML Education team at AWS. He has worked in retail and experiential marketing for the past 7 years, focused on developing communities and marketing campaigns. Out of the office, he’s passionate about public lands access and conservation, and enjoys backcountry skiing, climbing, biking, and hiking throughout Washington’s Cascade mountains.
Governing the ML lifecycle at scale, Part 4: Scaling MLOps with security and governance controls
This post provides detailed steps for setting up the key components of a multi-account ML platform. This includes configuring the ML Shared Services Account, which manages the central templates, model registry, and deployment pipelines; sharing the ML Admin and SageMaker Projects Portfolios from the central Service Catalog; and setting up the individual ML Development Accounts…
This post provides detailed steps for setting up the key components of a multi-account ML platform. This includes configuring the ML Shared Services Account, which manages the central templates, model registry, and deployment pipelines; sharing the ML Admin and SageMaker Projects Portfolios from the central Service Catalog; and setting up the individual ML Development Accounts where data scientists can build and train models.
How Untold Studios empowers artists with an AI assistant built on Amazon Bedrock
Untold Studios is a tech-driven, leading creative studio specializing in high-end visual effects and animation. This post details how we used Amazon Bedrock to create an AI assistant (Untold Assistant), providing artists with a straightforward way to access our internal resources through a natural language interface integrated directly into their existing Slack workflow. Source
Untold Studios is a tech-driven, leading creative studio specializing in high-end visual effects and animation. This post details how we used Amazon Bedrock to create an AI assistant (Untold Assistant), providing artists with a straightforward way to access our internal resources through a natural language interface integrated directly into their existing Slack workflow.
Building the future of construction analytics: CONXAI’s AI inference on Amazon EKS
CONXAI Technology GmbH is pioneering the development of an advanced AI platform for the Architecture, Engineering, and Construction (AEC) industry. In this post, we dive deep into how CONXAI hosts the state-of-the-art OneFormer segmentation model on AWS using Amazon Simple Storage Service (Amazon S3), Amazon Elastic Kubernetes Service (Amazon EKS), KServe, and NVIDIA Triton. Source
CONXAI Technology GmbH is pioneering the development of an advanced AI platform for the Architecture, Engineering, and Construction (AEC) industry. In this post, we dive deep into how CONXAI hosts the state-of-the-art OneFormer segmentation model on AWS using Amazon Simple Storage Service (Amazon S3), Amazon Elastic Kubernetes Service (Amazon EKS), KServe, and NVIDIA Triton.