Connect with us

Amazon

Run distributed hyperparameter and neural architecture tuning jobs with Syne Tune

Today we announce the general availability of Syne Tune, an open-source Python library for large-scale distributed hyperparameter and neural architecture optimization. It provides implementations of several state-of-the-art global optimizers, such as Bayesian optimization, Hyperband, and population-based training. Additionally, it supports constrained and multi-objective optimization, and allows you to bring your own global optimization algorithm. With…

Published

on

Today we announce the general availability of Syne Tune, an open-source Python library for large-scale distributed hyperparameter and neural architecture optimization. It provides implementations of several state-of-the-art global optimizers, such as Bayesian optimization, Hyperband, and population-based training. Additionally, it supports constrained and multi-objective optimization, and allows you to bring your own global optimization algorithm.

With Syne Tune, you can run hyperparameter and neural architecture tuning jobs locally on your machine or remotely on Amazon SageMaker by changing just one line of code. The former is a well-suited backend for smaller workloads and fast experimentation on local CPUs or GPUs. The latter is well-suited for larger workloads, which come with a substantial amount of implementation overhead. Syne Tune makes it easy to use SageMaker as a backend to reduce wall clock time by evaluating a large number of configurations on parallel Amazon Elastic Compute Cloud (Amazon EC2) instances, while taking advantage of SageMaker’s rich set of functionalities (including pre-built Docker deep learning framework images, EC2 Spot Instances, experiment tracking, and virtual private networks).

By open-sourcing Syne Tune, we hope to create a community that brings together academic and industrial researchers in machine learning (ML). Our goal is to create synergies between these two groups by enabling academics to easily validate small-scale experiments at larger scale and industrials to use a broader set of state-of-the-art optimizers.

In this post, we discuss hyperparameter and architecture optimization in ML, and show you how to launch tuning experiments on your local machine and also on SageMaker for large-scale experiments.

Hyperparameter and architecture optimization in machine learning

Every ML algorithm comes with a set of hyperparameters that control the training algorithm or the architecture of the underlying statistical model. Typical examples of such hyperparameters for deep neural networks are the learning rate or the number of units per layer. Setting these hyperparameters correctly is crucial to obtain top-notch predictive performances.

To overcome the daunting process of trial and error, hyperparameter and architecture optimization aims to automatically find the specific configuration that maximizes the validation performance of our ML algorithm. Arguably, the easiest method to solve this global optimization problem is random search, where configurations are sampled from a predefined probability distribution. A more sample-efficient technique is Bayesian optimization, which maintains a probabilistic model of the objective function (here, the validation performance) to guide the search toward the global optimum in a sequential manner.

Unfortunately, with ever-increasing dataset sizes and ever-deeper models, training deep neural networks can be prohibitively slow to tune. Recent advances in hyperparameter optimization, such as Hyperband or MoBster, early stop the evaluation of configurations that are unlikely to achieve a good performance and reallocate the resources that would have been consumed to the evaluation of other candidate configurations. You can obtain further gains by using distributed resources to parallelize the tuning process. Because the time to train a deep neural network can vary widely across hyperparameter and architecture configurations, optimal resource allocation requires our optimizer to asynchronously decide which configuration to run next by taking the pending evaluation of other configurations into account. Next, we see how this works in practice and how we can run this either on a local machine or on SageMaker.

Tune hyperparameters with Syne Tune

We now detail how to tune hyperparameters with Syne Tune. First, you need a script that takes hyperparameters as arguments and reports results as soon as they are observed. Let’s look at a simplified example of a script that exposes the learning rate, dropout rate, and momentum as hyperparameters, and reports the validation accuracy after each training epoch:

from argparse import ArgumentParser from syne_tune.report import Reporter if __name__ == ‘__main__’: parser = ArgumentParser() parser.add_argument(‘–lr’, type=float) parser.add_argument(‘–dropout_rate’, type=float) parser.add_argument(‘–momentum’, type=float) args, _ = parser.parse_known_args() report = Reporter() for epoch in range(1, args.epochs + 1): # … train model and get validation accuracy val_acc = compute_accuracy() # Feed the score back to Syne Tune. report(epoch=epoch, val_acc=val_acc)

The important part is the call to report. It enables you to transmit results to a scheduler that decides whether to continue the evaluation of a configuration, or trial, and later potentially uses this data to select new configurations. In our case, we use a common use case that trains a computer vision model adapted from SageMaker examples on GitHub.

We define the search space for the hyperparameters (dropout, learning rate, momentum) that we want to optimize by specifying the ranges:

from syne_tune.search_space import loguniform, uniform max_epochs = 27 config_space = { “epochs”: max_epochs, “lr”: loguniform(1e-5, 1e-1), “momentum”: uniform(0.8, 1.0), “dropout_rate”: loguniform(1e-5, 1.0), }

We also specify the scheduler we want to use, Hyperband in our case:

from syne_tune.optimizer.schedulers.hyperband import HyperbandScheduler scheduler = HyperbandScheduler( config_space, max_t=max_epochs, resource_attr=’epoch’, searcher=’random’, metric=”val_acc”, mode=”max”, )

Hyperband is a method that randomly samples configurations and early stops evaluation trials if they’re not performing well enough after a few epochs. We use this particular scheduler for our example, but many others are available; for example, switching searcher=bayesopt enables us to use MoBster, which uses a surrogate model to sample new configurations to evaluate.

We’re now ready to define and launch a hyperparameter tuning job. First, we define the number of workers that evaluate trials concurrently and how long the optimization should run in seconds. Importantly, we use the local backend to evaluate our training script “train_cifar100.py” (see the full code). This means that the tuning happens on the local machine with one Python subprocess per worker. See the following code:

from syne_tune.backend.local_backend import LocalBackend from syne_tune.tuner import Tuner from syne_tune.stopping_criterion import StoppingCriterion tuner = Tuner( backend=LocalBackend(entry_point=”train_cifar100.py”), scheduler=scheduler, stop_criterion=StoppingCriterion(max_wallclock_time=7200), n_workers=4, ) tuner.run()

As soon as the tuning starts, Syne Tune outputs the following line:

INFO:syne_tune.tuner:results of trials will be saved on /home/ec2-user/syne-tune/train-cifar100-2021-11-05-13-29-01-468

The log of the trials is stored in the aforementioned folder for further analysis. At any time during the tuning job, we can easily get the results obtained so far by calling load_experiment(“train-cifar100-2021-11-05-15-22-27-531”) and plotting the best result obtained since the start of the tuning job:

from syne_tune.experiments import load_experiment tuning_experiment = load_experiment(“train-cifar100-2021-11-05-15-22-27-531”) tuning_experiment.plot()

The following graph shows our results.

More fine-grained information is available if desired; the results obtained during tuning are stored as well as the scheduler and tuner state—namely, the state of the optimization process. For instance, we can plot the metric obtained for each trial over time (recall that we run four trials asynchronously). In the following figure, each trace represents the evaluation of a configuration as a function of the wall clock time; a dot is a trial stopped after one epoch.

We clearly see the effect of early stopping—only the most promising configurations are evaluated fully and poor performing configurations are stopped early, often after just evaluating a single epoch.

We can also easily switch to another scheduler, for example, random search or MoBster:

from syne_tune.optimizer.schedulers.fifo import FIFOScheduler scheduler = FIFOScheduler( config_space, searcher=’random’, metric=”val_acc”, mode=”max”, ) scheduler = HyperbandScheduler( config_space, max_t=max_epochs, resource_attr=’epoch’, searcher=’bayesopt’, metric=”val_acc”, mode=”max”, )

If we then run the same code with the new schedulers, we can compare all three methods. We see in the following figure that Hyperband only continues well-performing trials, and early stops poorly performing configurations.

Therefore, Hyperband evaluates many more configurations than random search (see the following figure), which uses resources to evaluate every configuration until the end. This can lead to drastic speedups of the tuning process in practice.

MoBster further improves over Hyperband by using a probabilistic surrogate model of the objective function.

The following figure show all configurations that Hyperband samples during the tuning job.

In comparison, MoBster samples more promising configurations around the well-performing range (brighter color being better) of the search space instead of sampling them uniformly at random like Hyperband.

Run large-scale tuning jobs with Syne Tune and SageMaker

The previous example showed how to tune hyperparameters on a local machine. Sometimes, we need more powerful machines or a large number or workers, which motivates the use of a cloud infrastructure. Syne Tune provides a very simple way to run tuning jobs on SageMaker. Let’s look at how this can be achieved with Syne Tune.

We first upload the cifar100 dataset to Amazon Simple Storage Service (Amazon S3) so that it’s available on EC2 instances:

import sagemaker sagemaker_session = sagemaker.Session() bucket = sagemaker_session.default_bucket() prefix = “sagemaker/DEMO-pytorch-cnn-cifar100″ role = sagemaker.get_execution_role() inputs = sagemaker_session.upload_data(path=”data”, bucket=bucket, key_prefix=”data/cifar100″)

Next, we specify that we want trials to be run on the SageMaker backend. We use the SageMaker framework (PyTorch) in this particular example because we have a PyTorch training script, but you can use any SageMaker framework (such as XGBoost, TensorFlow, Scikit-learn, or Hugging Face).

A SageMaker framework is a Python wrapper that allows you to run ML code easily by providing a pre-made Docker image that works seamlessly on CPU and GPU for many framework versions. In this particular example, all we need to do is to instantiate the wrapper PyTorch with our training script:

from sagemaker.pytorch import PyTorch from syne_tune.backend.sagemaker_backend.sagemaker_utils import get_execution_role from syne_tune.backend.sagemaker_backend.sagemaker_backend import SagemakerBackend backend = SagemakerBackend( sm_estimator=PyTorch( entry_point=”./train_cifar100.py”, instance_type=”ml.g4dn.xlarge”, instance_count=1, role=get_execution_role(), framework_version=’1.7.1′, py_version=’py3′, ), inputs=inputs, )

We can now run our tuning job again, but this time we use 20 workers, each having their own GPU:

tuner = Tuner( backend=backend, scheduler=scheduler, stop_criterion=StoppingCriterion(max_wallclock_time=7200, max_cost=20.0), n_workers=20, tuner_name=”cifar100-on-sagemaker” ) tuner.run()

After each instance initiates a training job, you see the status update as in the local case. An important difference to the local backend is that the total estimated dollar cost is displayed as well the cost of workers.

trial_id status iter dropout_rate epochs lr momentum epoch val_acc worker-time worker-cost 0 InProgress 1 0.003162 30 0.001000 0.900000 1.0 0.4518 50.0 0.010222 1 InProgress 1 0.037723 30 0.000062 0.843500 1.0 0.1202 50.0 0.010222 2 InProgress 1 0.000015 30 0.000865 0.821807 1.0 0.4121 50.0 0.010222 3 InProgress 1 0.298864 30 0.006991 0.942469 1.0 0.2283 49.0 0.010018 4 InProgress 0 0.000017 30 0.028001 0.911238 – – – 5 InProgress 0 0.000144 30 0.000080 0.870546 – – – – 6 trials running, 0 finished (0 until the end), 387.53s wallclock-time, 0.04068444444444444$ estimated cost

Because we specified max_wallclock_time=7200 and max_cost=20.0, the tuning job stops when the wall clock time or the estimated cost goes above the specified bound. In addition to providing an estimate of the cost, it can be optimized with our multi-objective optimizers (see the GitHub repo for an example). As shown in the following figures, the SageMaker backend allows you to evaluate many more configurations of hyperparameters and architectures in the same wall clock time than the local one and, as a result, increases the likelihood of finding a better configuration.

Conclusion

In this post, we saw how to use Syne Tune to launch tuning experiments on your local machine and also on SageMaker for large-scale experiments. To learn more about the library, check out our GitHub repo for documentation and examples that show, for instance, how to run model-based Hyperband, tune multiple objectives, or run with your own scheduler. We look forward to your contributions and seeing how this solution can address everyday tuning of ML pipelines and models.

About the Author

David Salinas is a Sr Applied Scientist at AWS.

 Aaron Klein is an Applied Scientist at AWS.

Matthias Seeger is a Principal Applied Scientist at AWS.

Cedric Archambeau is a Principal Applied Scientist at AWS and Fellow of the European Lab for Learning and Intelligent Systems.



Source

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published.

Amazon

AWS Week in Review – May 16, 2022

This post is part of our Week in Review series. Check back each week for a quick roundup of interesting news and announcements from AWS! I had been on the road for the last five weeks and attended many of the AWS Summits in Europe. It was great to talk to so many of you…

Published

on

By

This post is part of our Week in Review series. Check back each week for a quick roundup of interesting news and announcements from AWS!

I had been on the road for the last five weeks and attended many of the AWS Summits in Europe. It was great to talk to so many of you in person. The Serverless Developer Advocates are going around many of the AWS Summits with the Serverlesspresso booth. If you attend an event that has the booth, say “Hi ” to my colleagues, and have a coffee while asking all your serverless questions. You can find all the upcoming AWS Summits in the events section at the end of this post.

Last week’s launches
Here are some launches that got my attention during the previous week.

AWS Step Functions announced a new console experience to debug your state machine executions – Now you can opt-in to the new console experience of Step Functions, which makes it easier to analyze, debug, and optimize Standard Workflows. The new page allows you to inspect executions using three different views: graph, table, and event view, and add many new features to enhance the navigation and analysis of the executions. To learn about all the features and how to use them, read Ben’s blog post.

Example on how the Graph View looks

Example on how the Graph View looks

AWS Lambda now supports Node.js 16.x runtime – Now you can start using the Node.js 16 runtime when you create a new function or update your existing functions to use it. You can also use the new container image base that supports this runtime. To learn more about this launch, check Dan’s blog post.

AWS Amplify announces its Android library designed for Kotlin – The Amplify Android library has been rewritten for Kotlin, and now it is available in preview. This new library provides better debugging capacities and visibility into underlying state management. And it is also using the new AWS SDK for Kotlin that was released last year in preview. Read the What’s New post for more information.

Three new APIs for batch data retrieval in AWS IoT SiteWise – With this new launch AWS IoT SiteWise now supports batch data retrieval from multiple asset properties. The new APIs allow you to retrieve current values, historical values, and aggregated values. Read the What’s New post to learn how you can start using the new APIs.

AWS Secrets Manager now publishes secret usage metrics to Amazon CloudWatch – This launch is very useful to see the number of secrets in your account and set alarms for any unexpected increase or decrease in the number of secrets. Read the documentation on Monitoring Secrets Manager with Amazon CloudWatch for more information.

For a full list of AWS announcements, be sure to keep an eye on the What’s New at AWS page.

Other AWS News
Some other launches and news that you may have missed:

IBM signed a deal with AWS to offer its software portfolio as a service on AWS. This allows customers using AWS to access IBM software for automation, data and artificial intelligence, and security that is built on Red Hat OpenShift Service on AWS.

Podcast Charlas Técnicas de AWS – If you understand Spanish, this podcast is for you. Podcast Charlas Técnicas is one of the official AWS podcasts in Spanish. This week’s episode introduces you to Amazon DynamoDB and shares stories on how different customers use this database service. You can listen to all the episodes directly from your favorite podcast app or the podcast web page.

AWS Open Source News and Updates – Ricardo Sueiras, my colleague from the AWS Developer Relation team, runs this newsletter. It brings you all the latest open-source projects, posts, and more. Read edition #112 here.

Upcoming AWS Events
It’s AWS Summits season and here are some virtual and in-person events that might be close to you:

You can register for re:MARS to get fresh ideas on topics such as machine learning, automation, robotics, and space. The conference will be in person in Las Vegas, June 21–24.

That’s all for this week. Check back next Monday for another Week in Review!

— Marcia



Source

Continue Reading

Amazon

Personalize your machine translation results by using fuzzy matching with Amazon Translate

A person’s vernacular is part of the characteristics that make them unique. There are often countless different ways to express one specific idea. When a firm communicates with their customers, it’s critical that the message is delivered in a way that best represents the information they’re trying to convey. This becomes even more important when…

Published

on

By

A person’s vernacular is part of the characteristics that make them unique. There are often countless different ways to express one specific idea. When a firm communicates with their customers, it’s critical that the message is delivered in a way that best represents the information they’re trying to convey. This becomes even more important when it comes to professional language translation. Customers of translation systems and services expect accurate and highly customized outputs. To achieve this, they often reuse previous translation outputs—called translation memory (TM)—and compare them to new input text. In computer-assisted translation, this technique is known as fuzzy matching. The primary function of fuzzy matching is to assist the translator by speeding up the translation process. When an exact match can’t be found in the TM database for the text being translated, translation management systems (TMSs) often have the option to search for a match that is less than exact. Potential matches are provided to the translator as additional input for final translation. Translators who enhance their workflow with machine translation capabilities such as Amazon Translate often expect fuzzy matching data to be used as part of the automated translation solution.

In this post, you learn how to customize output from Amazon Translate according to translation memory fuzzy match quality scores.

Translation Quality Match

The XML Localization Interchange File Format (XLIFF) standard is often used as a data exchange format between TMSs and Amazon Translate. XLIFF files produced by TMSs include source and target text data along with match quality scores based on the available TM. These scores—usually expressed as a percentage—indicate how close the translation memory is to the text being translated.

Some customers with very strict requirements only want machine translation to be used when match quality scores are below a certain threshold. Beyond this threshold, they expect their own translation memory to take precedence. Translators often need to apply these preferences manually either within their TMS or by altering the text data. This flow is illustrated in the following diagram. The machine translation system processes the translation data—text and fuzzy match scores— which is then reviewed and manually edited by translators, based on their desired quality thresholds. Applying thresholds as part of the machine translation step allows you to remove these manual steps, which improves efficiency and optimizes cost.

Machine Translation Review Flow

Figure 1: Machine Translation Review Flow

The solution presented in this post allows you to enforce rules based on match quality score thresholds to drive whether a given input text should be machine translated by Amazon Translate or not. When not machine translated, the resulting text is left to the discretion of the translators reviewing the final output.

Solution Architecture

The solution architecture illustrated in Figure 2 leverages the following services:

  • Amazon Simple Storage Service – Amazon S3 buckets contain the following content:
    • Fuzzy match threshold configuration files
    • Source text to be translated
    • Amazon Translate input and output data locations
  • AWS Systems Manager – We use Parameter Store parameters to store match quality threshold configuration values
  • AWS Lambda – We use two Lambda functions:
    • One function preprocesses the quality match threshold configuration files and persists the data into Parameter Store
    • One function automatically creates the asynchronous translation jobs
  • Amazon Simple Queue Service – An Amazon SQS queue triggers the translation flow as a result of new files coming into the source bucket

Solution Architecture Diagram

Figure 2: Solution Architecture

You first set up quality thresholds for your translation jobs by editing a configuration file and uploading it into the fuzzy match threshold configuration S3 bucket. The following is a sample configuration in CSV format. We chose CSV for simplicity, although you can use any format. Each line represents a threshold to be applied to either a specific translation job or as a default value to any job.

default, 75 SourceMT-Test, 80

The specifications of the configuration file are as follows:

  • Column 1 should be populated with the name of the XLIFF file—without extension—provided to the Amazon Translate job as input data.
  • Column 2 should be populated with the quality match percentage threshold. For any score below this value, machine translation is used.
  • For all XLIFF files whose name doesn’t match any name listed in the configuration file, the default threshold is used—the line with the keyword default set in Column 1.

Auto-generated parameter in Systems Manager Parameter Store

Figure 3: Auto-generated parameter in Systems Manager Parameter Store

When a new file is uploaded, Amazon S3 triggers the Lambda function in charge of processing the parameters. This function reads and stores the threshold parameters into Parameter Store for future usage. Using Parameter Store avoids performing redundant Amazon S3 GET requests each time a new translation job is initiated. The sample configuration file produces the parameter tags shown in the following screenshot.

The job initialization Lambda function uses these parameters to preprocess the data prior to invoking Amazon Translate. We use an English-to-Spanish translation XLIFF input file, as shown in the following code. It contains the initial text to be translated, broken down into what is referred to as segments, represented in the source tags.

Consent Form CONSENT FORM FORMULARIO DE CONSENTIMIENTO Screening Visit: Screening Visit Selección

The source text has been pre-matched with the translation memory beforehand. The data contains potential translation alternatives—represented as tags—alongside a match quality attribute, expressed as a percentage. The business rule is as follows:

  • Segments received with alternative translations and a match quality below the threshold are untouched or empty. This signals to Amazon Translate that they must be translated.
  • Segments received with alternative translations with a match quality above the threshold are pre-populated with the suggested target text. Amazon Translate skips those segments.

Let’s assume the quality match threshold configured for this job is 80%. The first segment with 99% match quality isn’t machine translated, whereas the second segment is, because its match quality is below the defined threshold. In this configuration, Amazon Translate produces the following output:

Consent Form FORMULARIO DE CONSENTIMIENTO CONSENT FORM FORMULARIO DE CONSENTIMIENTO Screening Visit: Visita de selección Screening Visit Selección

In the second segment, Amazon Translate overwrites the target text initially suggested (Selección) with a higher quality translation: Visita de selección.

One possible extension to this use case could be to reuse the translated output and create our own translation memory. Amazon Translate supports customization of machine translation using translation memory thanks to the parallel data feature. Text segments previously machine translated due to their initial low-quality score could then be reused in new translation projects.

In the following sections, we walk you through the process of deploying and testing this solution. You use AWS CloudFormation scripts and data samples to launch an asynchronous translation job personalized with a configurable quality match threshold.

Prerequisites

For this walkthrough, you must have an AWS account. If you don’t have an account yet, you can create and activate one.

Launch AWS CloudFormation stack

  1. Choose Launch Stack:
  2. For Stack name, enter a name.
  3. For ConfigBucketName, enter the S3 bucket containing the threshold configuration files.
  4. For ParameterStoreRoot, enter the root path of the parameters created by the parameters processing Lambda function.
  5. For QueueName, enter the SQS queue that you create to post new file notifications from the source bucket to the job initialization Lambda function. This is the function that reads the configuration file.
  6. For SourceBucketName, enter the S3 bucket containing the XLIFF files to be translated. If you prefer to use a preexisting bucket, you need to change the value of the CreateSourceBucket parameter to No.
  7. For WorkingBucketName, enter the S3 bucket Amazon Translate uses for input and output data.
  8. Choose Next.

    Figure 4: CloudFormation stack details

  9. Optionally on the Stack Options page, add key names and values for the tags you may want to assign to the resources about to be created.
  10. Choose Next.
  11. On the Review page, select I acknowledge that this template might cause AWS CloudFormation to create IAM resources.
  12. Review the other settings, then choose Create stack.

AWS CloudFormation takes several minutes to create the resources on your behalf. You can watch the progress on the Events tab on the AWS CloudFormation console. When the stack has been created, you can see a CREATE_COMPLETE message in the Status column on the Overview tab.

Test the solution

Let’s go through a simple example.

  1. Download the following sample data.
  2. Unzip the content.

There should be two files: an .xlf file in XLIFF format, and a threshold configuration file with .cfg as the extension. The following is an excerpt of the XLIFF file.

English to French sample file extract

Figure 5: English to French sample file extract

  1. On the Amazon S3 console, upload the quality threshold configuration file into the configuration bucket you specified earlier.

The value set for test_En_to_Fr is 75%. You should be able to see the parameters on the Systems Manager console in the Parameter Store section.

  1. Still on the Amazon S3 console, upload the .xlf file into the S3 bucket you configured as source. Make sure the file is under a folder named translate (for example, /translate/test_En_to_Fr.xlf).

This starts the translation flow.

  1. Open the Amazon Translate console.

A new job should appear with a status of In Progress.

Auto-generated parameter in Systems Manager Parameter Store

Figure 6: In progress translation jobs on Amazon Translate console

  1. Once the job is complete, click into the job’s link and consult the output. All segments should have been translated.

All segments should have been translated. In the translated XLIFF file, look for segments with additional attributes named lscustom:match-quality, as shown in the following screenshot. These custom attributes identify segments where suggested translation was retained based on score.

Custom attributes identifying segments where suggested translation was retained based on score

Figure 7: Custom attributes identifying segments where suggested translation was retained based on score

These were derived from the translation memory according to the quality threshold. All other segments were machine translated.

You have now deployed and tested an automated asynchronous translation job assistant that enforces configurable translation memory match quality thresholds. Great job!

Cleanup

If you deployed the solution into your account, don’t forget to delete the CloudFormation stack to avoid any unexpected cost. You need to empty the S3 buckets manually beforehand.

Conclusion

In this post, you learned how to customize your Amazon Translate translation jobs based on standard XLIFF fuzzy matching quality metrics. With this solution, you can greatly reduce the manual labor involved in reviewing machine translated text while also optimizing your usage of Amazon Translate. You can also extend the solution with data ingestion automation and workflow orchestration capabilities, as described in Speed Up Translation Jobs with a Fully Automated Translation System Assistant.

About the Authors

Narcisse Zekpa is a Solutions Architect based in Boston. He helps customers in the Northeast U.S. accelerate their adoption of the AWS Cloud, by providing architectural guidelines, design innovative, and scalable solutions. When Narcisse is not building, he enjoys spending time with his family, traveling, cooking, and playing basketball.

Dimitri Restaino is a Solutions Architect at AWS, based out of Brooklyn, New York. He works primarily with Healthcare and Financial Services companies in the North East, helping to design innovative and creative solutions to best serve their customers. Coming from a software development background, he is excited by the new possibilities that serverless technology can bring to the world. Outside of work, he loves to hike and explore the NYC food scene.



Source

Continue Reading

Amazon

Enhance the caller experience with hints in Amazon Lex

We understand speech input better if we have some background on the topic of conversation. Consider a customer service agent at an auto parts wholesaler helping with orders. If the agent knows that the customer is looking for tires, they’re more likely to recognize responses (for example, “Michelin”) on the phone. Agents often pick up…

Published

on

By

We understand speech input better if we have some background on the topic of conversation. Consider a customer service agent at an auto parts wholesaler helping with orders. If the agent knows that the customer is looking for tires, they’re more likely to recognize responses (for example, “Michelin”) on the phone. Agents often pick up such clues or hints based on their domain knowledge and access to business intelligence dashboards. Amazon Lex now supports a hints capability to enhance the recognition of relevant phrases in a conversation. You can programmatically provide phrases as hints during a live interaction to influence the transcription of spoken input. Better recognition drives efficient conversations, reduces agent handling time, and ultimately increases customer satisfaction.

In this post, we review the runtime hints capability and use it to implement verification of callers based on their mother’s maiden name.

Overview of the runtime hints capability

You can provide a list of phrases or words to help your bot with the transcription of speech input. You can use these hints with built-in slot types such as first and last names, street names, city, state, and country. You can also configure these for your custom slot types.

You can use the capability to transcribe names that may be difficult to pronounce or understand. For example, in the following sample conversation, we use it to transcribe the name “Loreck.”

Conversation 1

IVR: Welcome to ACME bank. How can I help you today?

Caller: I want to check my account balance.

IVR: Sure. Which account should I pull up?

Caller: Checking

IVR: What is the account number?

Caller: 1111 2222 3333 4444

IVR: For verification purposes, what is your mother’s maiden name?

Caller: Loreck

IVR: Thank you. The balance on your checking account is 123 dollars.

Words provided as hints are preferred over other similar words. For example, in the second sample conversation, the runtime hint (“Smythe”) is selected over a more common transcription (“Smith”).

Conversation 2

IVR: Welcome to ACME bank. How can I help you today?

Caller: I want to check my account balance.

IVR: Sure. Which account should I pull up?

Caller: Checking

IVR: What is the account number?

Caller: 5555 6666 7777 8888

IVR: For verification purposes, what is your mother’s maiden name?

Caller: Smythe

IVR: Thank you. The balance on your checking account is 456 dollars.

If the name doesn’t match the runtime hint, you can fail the verification and route the call to an agent.

Conversation 3

IVR: Welcome to ACME bank. How can I help you today?

Caller: I want to check my account balance.

IVR: Sure. Which account should I pull up?

Caller: Savings

IVR: What is the account number?

Caller: 5555 6666 7777 8888

IVR: For verification purposes, what is your mother’s maiden name?

Caller: Jane

IVR: There is an issue with your account. For support, you will be forwarded to an agent.

Solution overview

Let’s review the overall architecture for the solution (see the following diagram):

  • We use an Amazon Lex bot integrated with an Amazon Connect contact flow to deliver the conversational experience.
  • We use a dialog codehook in the Amazon Lex bot to invoke an AWS Lambda function that provides the runtime hint at the previous turn of the conversation.
  • For the purposes of this post, the mother’s maiden name data used for authentication is stored in an Amazon DynamoDB table.
  • After the caller is authenticated, the control is passed to the bot to perform transactions (for example, check balance)

In addition to the Lambda function, you can also send runtime hints to Amazon Lex V2 using the PutSession, RecognizeText, RecognizeUtterance, or StartConversation operations. The runtime hints can be set at any point in the conversation and are persisted at every turn until cleared.

Deploy the sample Amazon Lex bot

To create the sample bot and configure the runtime phrase hints, perform the following steps. This creates an Amazon Lex bot called BankingBot, and one slot type (accountNumber).

  1. Download the Amazon Lex bot.
  2. On the Amazon Lex console, choose Actions, Import.
  3. Choose the file BankingBot.zip that you downloaded, and choose Import.
  4. Choose the bot BankingBot on the Amazon Lex console.
  5. Choose the language English (GB).
  6. Choose Build.
  7. Download the supporting Lambda code.
  8. On the Lambda console, create a new function and select Author from scratch.
  9. For Function name, enter BankingBotEnglish.
  10. For Runtime, choose Python 3.8.
  11. Choose Create function.
  12. In the Code source section, open lambda_function.py and delete the existing code.
  13. Download the function code and open it in a text editor.
  14. Copy the code and enter it into the empty function code field.
  15. Choose deploy.
  16. On the Amazon Lex console, select the bot BankingBot.
  17. Choose Deployment and then Aliases, then choose the alias TestBotAlias.
  18. On the Aliases page, choose Languages and choose English (GB).
  19. For Source, select the bot BankingBotEnglish.
  20. For Lambda version or alias, enter $LATEST.
  21. On the DynamoDB console, choose Create table.
  22. Provide the name as customerDatabase.
  23. Provide the partition key as accountNumber.
  24. Add an item with accountNumber: “1111222233334444” and mothersMaidenName “Loreck”.
  25. Add item with accountNumber: “5555666677778888” and mothersMaidenName “Smythe”.
  26. Make sure the Lambda function has permissions to read from the DynamoDB table customerDatabase.
  27. On the Amazon Connect console, choose Contact flows.
  28. In the Amazon Lex section, select your Amazon Lex bot and make it available for use in the Amazon Connect contact flow.
  29. Download the contact flow to integrate with the Amazon Lex bot.
  30. Choose the contact flow to load it into the application.
  31. Make sure the right bot is configured in the “Get Customer Input” block.
  32. Choose a queue in the “Set working queue” block.
  33. Add a phone number to the contact flow.
  34. Test the IVR flow by calling in to the phone number.

Test the solution

You can now call in to the Amazon Connect phone number and interact with the bot.

Conclusion

Runtime hints allow you to influence the transcription of words or phrases dynamically in the conversation. You can use business logic to identify the hints as the conversation evolves. Better recognition of the user input allows you to deliver an enhanced experience. You can configure runtime hints via the Lex V2 SDK. The capability is available in all AWS Regions where Amazon Lex operates in the English (Australia), English (UK), and English (US) locales.

To learn more, refer to runtime hints.

About the Authors

Kai Loreck is a professional services Amazon Connect consultant. He works on designing and implementing scalable customer experience solutions. In his spare time, he can be found playing sports, snowboarding, or hiking in the mountains.

Anubhav Mishra is a Product Manager with AWS. He spends his time understanding customers and designing product experiences to address their business challenges.

Sravan Bodapati is an Applied Science Manager at AWS Lex. He focuses on building cutting edge Artificial Intelligence and Machine Learning solutions for AWS customers in ASR and NLP space. In his spare time, he enjoys hiking, learning economics, watching TV shows and spending time with his family.



Source

Continue Reading

Trending

Copyright © 2021 Today's Digital.