Connect with us

Amazon

Build MLOps workflows with Amazon SageMaker projects, GitLab, and GitLab pipelines

Machine learning operations (MLOps) are key to effectively transition from an experimentation phase to production. The practice provides you the ability to create a repeatable mechanism to build, train, deploy, and manage machine learning models. To quickly adopt MLOps, you often require capabilities that use your existing toolsets and expertise. Projects in Amazon SageMaker give…

Published

on

Machine learning operations (MLOps) are key to effectively transition from an experimentation phase to production. The practice provides you the ability to create a repeatable mechanism to build, train, deploy, and manage machine learning models. To quickly adopt MLOps, you often require capabilities that use your existing toolsets and expertise. Projects in Amazon SageMaker give organizations the ability to easily set up and standardize developer environments for data scientists and CI/CD (continuous integration, continuous delivery) systems for MLOps engineers. With SageMaker projects, MLOps engineers or organization administrators can define templates that bootstrap the ML workflow with source version control, automated ML pipelines, and a set of code to quickly start iterating over ML use cases. With projects, dependency management, code repository management, build reproducibility, and artifact sharing and management become easy for organizations to set up. SageMaker projects are provisioned using AWS Service Catalog products. Your organization can use project templates to provision projects for each of your users.

In this post, you use a custom SageMaker project template to incorporate CI/CD practices with GitLab and GitLab pipelines. You automate building a model using Amazon SageMaker Pipelines for data preparation, model training, and model evaluation. SageMaker projects builds on Pipelines by implementing the model deployment steps and using SageMaker Model Registry, along with your existing CI/CD tooling, to automatically provision a CI/CD pipeline. In our use case, after the trained model is approved in the model registry, the model deployment pipeline is triggered via a GitLab pipeline.

Prerequisites

For this walkthrough, you should have the following prerequisites:

This post provides a detailed explanation of the SageMaker projects, GitLab, and GitLab pipelines integration. We review the code and discuss the components of the solution. To deploy the solution, reference the GitHub repo, which provides step-by-step instructions for implementing a MLOps workflow using a SageMaker project template with GitLab and GitLab pipelines.

Solution overview

The following diagram shows the architecture we build using a custom SageMaker project template.

Let’s review the components of this architecture to understand the end-to-end setup:

  • GitLab – Acts as our code repository and enables CI/CD using GitLab pipelines. The custom SageMaker project template creates two repositories (model build and model deploy) in your GitLab account.
    • The first repository (model build) provides code to create a multi-step model building pipeline. This includes steps for data processing, model training, model evaluation, and conditional model registration based on accuracy. It trains a linear regression model using the XGBoost algorithm on the well-known UCI Machine Learning Abalone dataset.
    • The second repository (model deploy) contains the code and configuration files for model deployment, as well as the test scripts required to pass the quality benchmark. These are code stubs that must be defined for your use case.
    • Each repository also has a GitLab CI pipeline. The model build pipeline automatically triggers and runs the pipeline from end to end whenever a new commit is made to the model build repository. The model deploy pipeline is triggered whenever a new model version is added to the model registry, and the model version status is marked as Approved.
  • SageMaker Pipelines – Contains the directed acyclic graph (DAG) that includes data preparation, model training, and model evaluation.
  • Amazon S3 – An Amazon Simple Storage Service (Amazon S3) bucket stores the output model artifacts that are generated from the pipeline.
  • AWS Lambda – Two AWS Lambda functions are created, which we review in more detail later in this post:
    • One function seeds the code into your two GitLab repositories.
    • One function triggers the model deployment pipeline after the new model is registered in the model registry.
  • SageMaker Model Registry – Tracks the model versions and respective artifacts, including the lineage and metadata. A model package group is created that contains the group of related model versions. The model registry also manages the approval status of the model version for downstream deployment.
  • Amazon EventBridge – Amazon EventBridge monitors all changes to the model registry. It also contains a rule that triggers the Lambda function for the model deploy pipeline, when the model package version state changes from PendingManualApproval to Approved in the model registry.
  • AWS CloudFormation – AWS CloudFormation deploys the model and creates the SageMaker endpoints when the model deploy pipeline is triggered by the approval of the trained model.
  • SageMaker hosting – Creates two HTTPS real-time endpoints to perform inference. The hosting option is configurable, for example, for batch transform or asynchronous inference. The staging endpoint is created when the model deploy pipeline is triggered by the approval of the trained model. This endpoint is used to evaluate the deployed model by confirming it’s generating predictions that meet our target accuracy requirements. When the model is ready to be deployed in production, a production endpoint is provisioned by manually starting the job in the GitLab model deploy pipeline.

Use the new MLOps project template with GitLab and GitLab pipelines

In this section, we review the parameters required for the MLOps project template (see the following screenshot). This template allows you to utilize GitLab pipelines as your orchestrator.

The template has the following parameters:

  • GitLab Server URL – The URL of the GitLab server in https:// format. The GitLab accounts under your organization may contain a different customized server URL (domain). The server URL is required to authorize access to the python-gitlab API. You use the personal access token you created to allow permission to the Lambda functions to push the seed code into your GitLab repositories. We discuss the Lambda function code in more detail in the next section.
  • Base URL for your GitLab Repositories – The URL for your GitLab account to create the model build and deploy repositories in the format of https:/// or https:///. You must create a personal access token under your GitLab user account in order to authenticate with the GitLab API.
  • Model Build Repository Name – The name of the repository mlops-gitlab-project-seedcode-model-build of the model build and training seed code.
  • Model Deploy Repository Name – The name of the repository mlops-gitlab-project-seedcode-model-deploy of the model deploy seed code.
  • GitLab Group ID – GitLab groups are important for managing access and permissions for projects. Enter the ID of the group that repositories are created for. In this example, we enter None, because we’re using the root group.
  • GitLab Secret Name (Secrets Manager) – The secret in AWS Secrets Manager contains the value of the GitLab personal access token that is used by the Lambda function to populate the seed code in the repositories. Enter the name of the secret you created in Secrets Manager.

Lambda functions code overview

As discussed earlier, we create two Lambda functions. The first function seeds the code into your GitLab repositories. The second function triggers your model deployment. Let’s review these functions in more detail.

Seedcodecheckin Lambda function

This function helps create the GitLab projects and repositories and pushes the code files into these repositories. These files are needed to set up the ML CI/CD pipelines.

The Secrets Manager secret is created to allow the function to retrieve the stored GitLab personal access token. This token allows the function to communicate with GitLab to create repositories and push the seed code. It also allows the environment variables to be passed in through the project.yml file. See the following code:

def get_secret(): ”’ ”’ secret_name = os.environ[‘SecretName’] region_name = os.environ[‘Region’] session = boto3.session.Session() client = session.client( service_name=’secretsmanager’, region_name=region_name )

The Secrets Manager secret was created when you ran the init.sh file earlier as part of the code repo prerequisites.

The deployment package for the function contains several libraries, including python-gitlab and cfn-response. Because our function’s source code is packaged as a .zip file and interacts with AWS CloudFormation, we use cfn-response. We use the python-gitlab API and the Amazon SDK for Python (Boto3) to download the seed code files and upload them to Amazon S3 to be pushed to our GitLab repositories. See the following code:

# Configure SDKs for GitLab and S3 gl = gitlab.Gitlab(gitlab_server_uri, private_token=gitlab_private_token) s3 = boto3.client(‘s3′) model_build_filename = f’/tmp/{str(uuid.uuid4())}-model-build-seed-code.zip’ model_deploy_filename = f’/tmp/{str(uuid.uuid4())}-model-deploy-seed-code.zip’ model_build_directory = f’/tmp/{str(uuid.uuid4())}-model-build’ model_deploy_directory = f’/tmp/{str(uuid.uuid4())}-model-deploy’ # Get Model Build Seed Code from S3 for Gitlab Repo with open(model_build_filename, ‘wb’) as f: s3.download_fileobj(sm_seed_code_bucket, model_build_sm_seed_code_object_name, f) # Get Model Deploy Seed Code from S3 for Gitlab Repo with open(model_deploy_filename, ‘wb’) as f: s3.download_fileobj(sm_seed_code_bucket, model_deploy_sm_seed_code_object_name, f)

Two projects (repositories) are created in GitLab, and the seed code files are pushed into the repositories (model build and model deploy) using the python-gitlab API:

# Create the GitLab Project try: if group_id is None: build_project = gl.projects.create({‘name’: gitlab_project_name_build}) else: build_project = gl.projects.create({‘name’: gitlab_project_name_build, ‘namespace_id’: int(group_id)}) …. try: if group_id is None: deploy_project = gl.projects.create({‘name’: gitlab_project_name_deploy}) else: deploy_project = gl.projects.create({‘name’: gitlab_project_name_deploy, ‘namespace_id’: int(group_id)}) …. # Commit to the above created Repo all the files that were in the seed code Zip try: build_project.commits.create(build_data) except Exception as e: logging.error(“Code could not be pushed to the model build repo.”) logging.error(e) cfnresponse.send(event, context, cfnresponse.FAILED, response_data) return { ‘message’ : “GitLab seedcode checkin failed.” } try: deploy_project.commits.create(deploy_data) except Exception as e: logging.error(“Code could not be pushed to the model deploy repo.”) logging.error(e) cfnresponse.send(event, context, cfnresponse.FAILED, response_data) return { ‘message’ : “GitLab seedcode checkin failed.” }

The following screenshot shows the successful run of the Lambda function pushing the required seed code files into both projects in your GitLab account.

gitlab-trigger Lambda function

This Lambda function is triggered by EventBridge. The project.yml CloudFormation template contains an EventBridge rule that triggers the function when the model package state changes in the SageMaker model registry. See the following code:

ModelDeploySageMakerEventRule: Type: AWS::Events::Rule Properties: # Max length allowed: 64 Name: !Sub sagemaker-${SageMakerProjectName}-${SageMakerProjectId}-event-rule # max: 10+33+15+5=63 chars Description: “Rule to trigger a deployment when SageMaker Model registry is updated with a new model package. For example, a new model package is registered with Registry” EventPattern: source: – “aws.sagemaker” detail-type: – “SageMaker Model Package State Change” detail: ModelPackageGroupName: – !Sub ${SageMakerProjectName}-${SageMakerProjectId} State: “ENABLED” Targets: – Arn: !GetAtt GitLabPipelineTriggerLambda.Arn Id: !Sub sagemaker-${SageMakerProjectName}-trigger

The following screenshot contains a subset of the function code that triggers the GitLab pipeline in the .gitlab-ci.yml file. It deploys the SageMaker model endpoints using the CloudFormation template endpoint-config-template.yml in your model deploy repository.

To better understand the solution, review the entire code for the functions as needed.

GitLab and GitLab pipelines overview

As described earlier, GitLab plays a key role as the source code repo and enabling CI/CD pipelines in this solution. Let’s look into our GitLab account to understand the components.

After the project is successfully created, using our custom template in SageMaker projects per the steps in the code repo, navigate to your GitLab account to see two new repositories. Each repository has a GitLab CI pipeline associated with it that runs as soon as the project is created.

The first run of each pipeline fails because GitLab doesn’t have the AWS credentials. For each repository, navigate to Settings, CI/CD, Variables. Create two new variables, AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY, with the associated information for your GitLab role.

Model build pipeline in GitLab

Let’s review the GitLab pipelines, starting with the model build pipeline. We define the pipelines in GitLab by creating the .gitlab-ci.yml file, where we define the various stages and related jobs. As shown in the following screenshot, this pipeline has only one stage (training) and the related script shows how a SageMaker pipeline file is triggered. (You can learn more about the SageMaker pipeline by exploring the pipeline.py file on GitHub.)

When this GitLab pipeline is triggered, it starts the Abalone SageMaker pipeline to build your model.

When the model build is complete, you can locate this model in the model registry in SageMaker Studio.

Use this template for your custom use case

The model build repository contains code for preprocessing, training, and evaluating the model for the UCI Abalone dataset. You need to modify the files to address your custom use case.

  1. Navigate to the pipelines folder in your model build repository.

  1. Upload your dataset to a S3 bucket. Replace the bucket URL in this section of your pipeline.py file.

  1. Navigate to .gitlab-ci.yml and modify this section with the folder and file of your use case.

Model deployment pipeline in GitLab

When the SageMaker pipeline that trains the model is complete, a model is added to the SageMaker model registry. If that model is approved, the GitLab pipeline in the model deploy repository starts and the model deployment process begins.

To approve the model in the model registry, complete the following steps:

  1. Choose the Components and registries icon.
  2. Choose Model registry, and choose (right-click) the model version.
  3. Choose Update model version status.
  4. Change the status from Pending to Approved.

This triggers the deploy pipeline.

Now, let’s review the .gitlab-ci.yml file in the model deploy repository. As shown in the following screenshot, this model deploy pipeline has four stages: build, staging deploy, test staging, and production deploy. This pipeline uses AWS CloudFormation to deploy the model and create the SageMaker endpoints.

A manual step in the GitLab pipeline exists for model promotion from staging to production that creates an endpoint with the suffix -prod. If you choose manual, this job runs and upon completion deploys the SageMaker endpoint.

To verify that the endpoints were created, navigate to the Endpoints page on the SageMaker console. You should see two endpoints: -staging and -prod.

GitLab implementation patterns

In this section, we discuss two patterns for implementing GitLab: hosting with Amazon Virtual Private Cloud (Amazon VPC), or with two-factor authentication.

Hosting GitLab in an Amazon VPC

You may choose to deploy GitLab in an Amazon VPC to use a private network and provide access to AWS resources. In this scenario, the Lambda functions also must be deployed in a VPC to access the GitLab API. We accomplish this by updating the project.yml file and the AWS Identity and Access Management (IAM) role AmazonSageMakerServiceCatalogProductsUseRole.

The IAM user that you used to create the VPC requires the following user permissions for Lambda to verify network resources:

  • ec2:DescribeSecurityGroups
  • ec2:DescribeSubnets
  • ec2:DescribeVpcs

The Lambda functions’ execution role requires the following permissions to create and manage network interfaces:

  • ec2:CreateNetworkInterface
  • ec2:DescribeNetworkInterfaces
  • ec2:DeleteNetworkInterface
  1. On the IAM console, search for AmazonSageMakerServiceCatalogProductsUseRole.
  2. Choose Attach policies.
  3. Search for the AWSLambdaVPCAccessExecutionRole managed policy.
  4. Choose Attach policy.

Next, we update project.yml to configure the functions to deploy in a VPC by providing the VPC security groups and subnets.

    1. Add the subnet IDs and security group IDs to the Parameters section, for example: SubnetId1: Type: AWS::EC2::Subnet::Id Description: Subnet Id for Lambda function SubnetId2: Type: AWS::EC2::Subnet::Id Description: Subnet Id for Lambda function SecurityGroupId: Type: AWS::EC2::SecurityGroup::Id Description: Security Group Id for Lambda function to Execute
    2. Add the VpcConfig information under Properties for the GitSeedCodeCheckinLambda and GitLabPipelineTriggerLambda functions, for example: SubnetId1: GitSeedCodeCheckinLambda: Type: ‘AWS::Lambda::Function’ Properties: Description: To trigger the codebuild project for the seedcode checkin ….. VpcConfig: SecurityGroupIds: – !Ref SecurityGroupId SubnetIds: – !Ref SubnetId1 – !Ref SubnetId2

Two-factor authentication enabled

If you enabled two-factor authentication on your GitLab account, you need to use your personal access token to clone the repositories in SageMaker Studio. The token requires the read_repository and write_repository flags. To clone the model build and model deploy repositories, enter the following commands:

git clone https://oauth2:PERSONAL_ACCESS_TOKEN@gitlab.com/username/gitlab-project-seedcode-model-build- git clone https://oauth2:PERSONAL_ACCESS_TOKEN@gitlab.com/username/gitlab-project-seedcode-model-deploy-

Because you previously created a secret for your personal access token, no changes are required to the code when two-factor authentication is enabled.

In this post, we walked through using a custom SageMaker MLOps project template to automatically build and configure a CI/CD pipeline. This pipeline incorporated your existing CI/CD tooling with SageMaker features for data preparation, model training, model evaluation, and model deployment. In our use case, we focused on using GitLab and GitLab pipelines with SageMaker projects and pipelines. For more detailed implementation information, review the GitHub repo. Try it out and let us know if you have any questions in the comments section!

About the Authors

Kirit Thadaka is an ML Solutions Architect working in the Amazon SageMaker Service SA team. Prior to joining AWS, Kirit spent time working in early stage AI startups followed by some time in consulting in various roles in AI research, MLOps, and technical leadership.

Lauren Mullennex is a Solutions Architect based in Denver, CO. She works with customers to help them architect solutions on AWS. In her spare time, she enjoys hiking and cooking Hawaiian cuisine.

Indrajit Ghosalkar is a Sr. Solutions Architect at Amazon Web Services based in Singapore. He loves helping customers achieve their business outcomes through cloud adoption and realize their data analytics and ML goals through adoption of DataOps / MLOps practices and solutions. In his spare time, he enjoys playing with his son, traveling and meeting new people.



Source

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published.

Amazon

Secure Amazon SageMaker Studio presigned URLs Part 2: Private API with JWT authentication

In part 1 of this series, we demonstrated how to resolve an Amazon SageMaker Studio presigned URL from a corporate network using Amazon private VPC endpoints without traversing the internet. In this post, we will continue to build on top of the previous solution to demonstrate how to build a private API Gateway via Amazon API…

Published

on

By

In part 1 of this series, we demonstrated how to resolve an Amazon SageMaker Studio presigned URL from a corporate network using Amazon private VPC endpoints without traversing the internet. In this post, we will continue to build on top of the previous solution to demonstrate how to build a private API Gateway via Amazon API Gateway as a proxy interface to generate and access Amazon SageMaker presigned URLs. Furthermore, we add an additional guardrail to ensure presigned URLs are only generated and accessed for the authenticated end-user within the corporate network.

Solution overview

The following diagram illustrates the architecture of the solution.

The process includes the following steps:

  1. In the Amazon Cognito user pool, first set up a user with the name matching their Studio user profile and register Studio as the app client in the user pool.
  2. The user federates from their corporate identity provider (IdP) and authenticates with the Amazon Cognito user pool for accessing Studio.
  3. Amazon Cognito returns a token to the user authorizing access to the Studio application.
  4. The user invokes createStudioPresignedUrl API on API Gateway along with a token in the header.
  5. API Gateway invokes a custom AWS Lambda authorizer and validates the token.
  6. When the token is valid, Amazon Cognito returns an access grant policy with studio user profile id to API Gateway.
  7. API Gateway invokes the createStudioPresignedUrl Lambda function for creating the studio presigned url.
  8. The createStudioPresignedUrl function creates a presigned URL using the SageMaker API VPC endpoint and returns to caller.
  9. User accesses the presigned URL from their corporate network that resolves over the Studio VPC endpoint.
  10. The function’s AWS Identity and Access Management (IAM) policy makes sure that the presigned URL creation and access are performed via VPC endpoints.

The following sections walk you through solution deployment, configuration, and validation for the API Gateway private API for creating and resolving a Studio presigned URL from a corporate network using VPC endpoints.

  1. Deploy the solution
  2. Configure the Amazon Cognito user
  3. Authenticating the private API for the presigned URL using a JSON Web Token
  4. Configure the corporate DNS server for accessing the private API
  5. Test the API Gateway private API for a presigned URL from the corporate network
  6. Pre-Signed URL Lambda Auth Policy
  7. Cleanup

Deploy the solution

You can deploy the solution through either the AWS Management Console or the AWS Serverless Application Model (AWS SAM).

To deploy the solution via the console, launch the following AWS CloudFormation template in your account by choosing Launch Stack. It takes approximately 10 minutes for the CloudFormation stack to complete.

To deploy the solution using AWS SAM, you can find the latest code in the aws-samples GitHub repository, where you can also contribute to the sample code. The following commands show how to deploy the solution using the AWS SAM CLI. If not currently installed, install the AWS SAM CLI.

  1. Clone the repository at https://github.com/aws-samples/secure-sagemaker-studio-presigned-url.
  2. After you clone the repo, navigate to the source and run the following code:

Configure the Amazon Cognito user

To configure your Amazon Cognito user, complete the following steps:

  1. Create an Amazon Cognito user with the same name as a SageMaker user profile: aws cognito-idp admin-create-user –user-pool-id –username
  2. Set the user password: aws cognito-idp admin-set-user-password –user-pool-id –username –password –permanent
  3. Get an access token: aws cognito-idp initiate-auth –auth-flow USER_PASSWORD_AUTH –client-id –auth-parameters USERNAME=,PASSWORD=

Authenticating the private API for the presigned URL using a JSON Web Token

When you deployed a private API for creating a SageMaker presigned URL, you added a guardrail to restrict access to access the presigned URL by anyone outside the corporate network and VPC endpoint. However, without implementing another control to the private API within the corporate network, any internal user within the corporate network would be able to pass unauthenticated parameters for the SageMaker user profile and access any SageMaker app.

To mitigate this issue, we propose passing a JSON Web Token (JWT) for the authenticated caller to the API Gateway and validating that token with a JWT authorizer. There are multiple options for implementing an authorizer for the private API Gateway, using either a custom Lambda authorizer or Amazon Cognito.

With a custom Lambda authorizer, you can embed a SageMaker user profile name in the returned policy. This prevents any users within the corporate network from being able to send any SageMaker user profile name for creating a presigned URL that they’re not authorized to create. We use Amazon Cognito to generate our tokens and a custom Lambda authorizer to validate and return the appropriate policy. For more information, refer to Building fine-grained authorization using Amazon Cognito, API Gateway, and IAM. The Lambda authorizer uses the Amazon Cognito user name as the user profile name.

If you’re unable to use Amazon Cognito, you can develop a custom application to authenticate and pass end-user tokens to the Lambda authorizer. For more information, refer to Use API Gateway Lambda authorizers.

Configure the corporate DNS server for accessing the private API

To configure your corporate DNS server, complete the following steps:

  1. On the Amazon Elastic Compute Cloud (Amazon EC2) console, choose your on-premises DNSA EC2 instance and connect via Systems Manager Session Manager.
  2. Add a zone record in the /etc/named.conf file for resolving to the API Gateway’s DNS name via your Amazon Route 53 inbound resolver, as shown in the following code: zone “zxgua515ef.execute-api..amazonaws.com” { type forward; forward only; forwarders { 10.16.43.122; 10.16.102.163; }; };
  3. Restart the named service using the following command: sudo service named restart

Validate requesting a presigned URL from the API Gateway private API for authorized users

In a real-world scenario, you would implement a front-end interface that would pass the appropriate Authorization headers for authenticated and authorized resources using either a custom solution or leverage AWS Amplify. For brevity of this blog post, the following steps leverages Postman to quickly validate the solution we deployed actually restricts requesting the presigned URL for an internal user, unless authorized to do so.

To validate the solution with Postman, complete the following steps:

  1. Install Postman on the WINAPP EC2 instance. See instructions here
  2. Open Postman and add the access token to your Authorization header: Authorization: Bearer
  3. Modify the API Gateway URL to access it from your internal EC2 instance:
    1. Add the VPC endpoint into your API Gateway URL: https://.execute-api..amazonaws.com/dev/EMPLOYEE_ID
    2. Add the Host header with a value of your API Gateway URL: .execute-api..amazonaws.com
    3. First, change the EMPLOYEE_ID to your Amazon Cognito user and SageMaker user profile name. Make sure you receive an authorized presigned URL.
    4. Then change the EMPLOYEE_ID to a user that is not yours and make sure you receive an access failure.
  4. On the Amazon EC2 console, choose your on-premises WINAPP instance and connect via your RDP client.
  5. Open a Chrome browser and navigate to your authorized presigned URL to launch Studio.

Studio is launched over VPC endpoint with remote address as the Studio VPC endpoint IP.

If the presigned URL is accessed outside of the corporate network, the resolution fails because the IAM policy condition for the presigned URL enforces creation and access from a VPC endpoint.

Pre-Signed URL Lambda Auth Policy

Above solution created the following Auth Policy for the Lambda that generated Pre-Signed URL for accessing SageMaker Studio.

{ “Version”: “2012-10-17”, “Statement”: [ { “Condition”: { “IpAddress”: { “aws:VpcSourceIp”: “10.16.0.0/16” } }, “Action”: “sagemaker:CreatePresignedDomainUrl”, “Resource”: “arn:aws:sagemaker:::user-profile/*/*”, “Effect”: “Allow” }, { “Condition”: { “IpAddress”: { “aws:SourceIp”: “192.168.10.0/24” } }, “Action”: “sagemaker:CreatePresignedDomainUrl”, “Resource”: “arn:aws:sagemaker:::user-profile/*/*”, “Effect”: “Allow” }, { “Condition”: { “StringEquals”: { “aws:sourceVpce”: [ “vpce-sm-api-xx”, “vpce-sm-api-yy” ] } }, “Action”: “sagemaker:CreatePresignedDomainUrl”, “Resource”: “arn:aws:sagemaker:::user-profile/*/*”, “Effect”: “Allow” } ] }

The above policy enforces Studio pre-signed URL is both generated and accessed via one of these three entrypoints:

  1. aws:VpcSourceIp as your AWS VPC CIDR
  2. aws:SourceIp as your corporate network CIDR
  3. aws:sourceVpce as your SageMaker API VPC endpoints

Cleanup

To avoid incurring ongoing charges, delete the CloudFormation stacks you created. Alternatively, if you deployed the solution using SAM, you need to authenticate to the AWS account the solution was deployed and run sam delete.

Conclusion

In this post, we demonstrated how to access Studio using a private API Gateway from a corporate network using Amazon private VPC endpoints, preventing access to presigned URLs outside the corporate network, and securing the API Gateway with a JWT authorizer using Amazon Cognito and custom Lambda authorizers.

Try out with this solution and experiment integrating this with your corporate portal, and leave your feedback in the comments!

About the Authors

Ram Vittal is a machine learning solutions architect at AWS. He has over 20+ years of experience architecting and building distributed, hybrid and cloud applications. He is passionate about building secure and scalable AI/ML and Big Data solutions to help enterprise customers with their cloud adoption and optimization journey to improve their business outcomes. In his spare time, he enjoys tennis, photography, and action movies.

Jonathan Nguyen is a Shared Delivery Team Senior Security Consultant at AWS. His background is in AWS Security with a focus on Threat Detection and Incident Response. Today, he helps enterprise customers develop a comprehensive AWS Security strategy, deploy security solutions at scale, and train customers on AWS Security best practices.

Chris Childers is a Cloud Infrastructure Architect in Professional Services at AWS. He works with AWS customers to design and automate their cloud infrastructure and improve their adoption of DevOps culture and processes.



Source

Continue Reading

Amazon

Secure Amazon SageMaker Studio presigned URLs Part 1: Foundational infrastructure

You can access Amazon SageMaker Studio notebooks from the Amazon SageMaker console via AWS Identity and Access Management (IAM) authenticated federation from your identity provider (IdP), such as Okta. When a Studio user opens the notebook link, Studio validates the federated user’s IAM policy to authorize access, and generates and resolves the presigned URL for…

Published

on

By

You can access Amazon SageMaker Studio notebooks from the Amazon SageMaker console via AWS Identity and Access Management (IAM) authenticated federation from your identity provider (IdP), such as Okta. When a Studio user opens the notebook link, Studio validates the federated user’s IAM policy to authorize access, and generates and resolves the presigned URL for the user. Because the SageMaker console runs on an internet domain, this generated presigned URL is visible in the browser session. This presents an undesired threat vector for exfiltration and gaining access to customer data when proper access controls are not enforced.

Studio supports a few methods for enforcing access controls against presigned URL data exfiltration:

  • Client IP validation using the IAM policy condition aws:sourceIp
  • Client VPC validation using the IAM condition aws:sourceVpc
  • Client VPC endpoint validation using the IAM policy condition aws:sourceVpce

When you access Studio notebooks from the SageMaker console, the only available option is to use client IP validation with the IAM policy condition aws:sourceIp. However, you can use browser traffic routing products such as Zscaler to ensure scale and compliance for your workforce internet access. These traffic routing products generate their own source IP, whose IP range is not controlled by the enterprise customer. This makes it impossible for these enterprise customers to use the aws:sourceIp condition.

To use client VPC endpoint validation using the IAM policy condition aws:sourceVpce, the creation of a presigned URL needs to originate in the same customer VPC where Studio is deployed, and resolution of the presigned URL needs to happen via a Studio VPC endpoint on the customer VPC. This resolution of the presigned URL during access time for corporate network users can be accomplished using DNS forwarding rules (both in Zscaler and corporate DNS) and then into the customer VPC endpoint using an AWS Route 53 inbound resolver.

In this part, we discuss the overarching architecture for securing studio pre-signed url and demonstrate how to set up the foundational infrastructure to create and launch a Studio presigned URL through your VPC endpoint over a private network without traversing the internet. This serves as the foundational layer for preventing data exfiltration by external bad actors gaining access to Studio pre-signed URL and unauthorized or spoofed corporate user access within a corporate environment.

Solution overview

The following diagram illustrates over-arching solution architecture.

The process includes the following steps:

  1. A corporate user authenticates via their IdP, connects to their corporate portal, and opens the Studio link from the corporate portal.
  2. The corporate portal application makes a private API call using an API Gateway VPC endpoint to create a presigned URL.
  3. The API Gateway VPC endpoint “create presigned URL” call is forwarded to the Route 53 inbound resolver on the customer VPC as configured in the corporate DNS.
  4. The VPC DNS resolver resolves it to the API Gateway VPC endpoint IP. Optionally, it looks up a private hosted zone record if it exists.
  5. The API Gateway VPC endpoint routes the request via the Amazon private network to the “create presigned URL API” running in the API Gateway service account.
  6. API Gateway invokes the create-pre-signedURL private API and proxies the request to the create-pre-signedURL Lambda function.
  7. The create-pre-signedURL Lambda call is invoked via the Lambda VPC endpoint.
  8. The create-pre-signedURL function runs in the service account, retrieves authenticated user context (user ID, Region, and so on), looks up a mapping table to identify the SageMaker domain and user profile identifier, makes a sagemaker createpre-signedDomainURL API call, and generates a presigned URL. The Lambda service role has the source VPC endpoint conditions defined for the SageMaker API and Studio.
  9. The generated presigned URL is resolved over the Studio VPC endpoint.
  10. Studio validates that the presigned URL is being accessed via the customer’s VPC endpoint defined in the policy, and returns the result.
  11. The Studio notebook is returned to the user’s browser session over the corporate network without traversing the internet.

The following sections walk you through how to implement this architecture to resolve Studio presigned URLs from a corporate network using VPC endpoints. We demonstrate a complete implementation by showing the following steps:

  1. Set up the foundational architecture.
  2. Configure the corporate app server to access a SageMaker presigned URL via a VPC endpoint.
  3. Set up and launch Studio from the corporate network.

Set up the foundational architecture

In the post Access an Amazon SageMaker Studio notebook from a corporate network, we demonstrated how to resolve a presigned URL domain name for a Studio notebook from a corporate network without traversing the internet. You can follow the instructions in that post to set up the foundational architecture, and then return to this post and proceed to the next step.

Configure the corporate app server to access a SageMaker presigned URL via a VPC endpoint

To enable accessing Studio from your internet browser, we set up an on-premises app server on Windows Server on the on-premises VPC public subnet. However, the DNS queries for accessing Studio are routed through the corporate (private) network. Complete the following steps to configure routing Studio traffic through the corporate network:

  1. Connect to your on-premises Windows app server.

  2. Choose Get Password then browse and upload your private key to decrypt your password.
  3. Use an RDP client and connect to the Windows Server using your credentials.
    Resolving Studio DNS from the Windows Server command prompt results in using public DNS servers, as shown in the following screenshot.
    Now we update Windows Server to use the on-premises DNS server that we set up earlier.
  4. Navigate to Control Panel, Network and Internet, and choose Network Connections.
  5. Right-click Ethernet and choose the Properties tab.
  6. Update Windows Server to use the on-premises DNS server.
  7. Now you update your preferred DNS server with your DNS server IP.
  8. Navigate to VPC and Route Tables and choose your STUDIO-ONPREM-PUBLIC-RT route table.
  9. Add a route to 10.16.0.0/16 with the target as the peering connection that we created during the foundational architecture setup.

Set up and launch Studio from your corporate network

To set up and launch Studio, complete the following steps:

  1. Download Chrome and launch the browser on this Windows instance.
    You may need to turn off Internet Explorer Enhanced Security Configuration to allow file downloads and then enable file downloads.
  2. In your local device Chrome browser, navigate to the SageMaker console and open the Chrome developer tools Network tab.
  3. Launch the Studio app and observe the Network tab for the authtokenparameter value, which includes the generated presigned URL along with the remote server address that the URL is routed to for resolution.In this example, the remote address 100.21.12.108 is one of the public DNS server addresses to resolve the SageMaker DNS domain name d-h4cy01pxticj.studio.us-west-2.sagemaker.aws.
  4. Repeat these steps from the Amazon Elastic Compute Cloud (Amazon EC2) Windows instance that you configured as part of the foundational architecture.

We can observe that the remote address is not the public DNS IP, instead it’s the Studio VPC endpoint 10.16.42.74.

Conclusion

In this post, we demonstrated how to resolve a Studio presigned URL from a corporate network using Amazon private VPC endpoints without exposing the presigned URL resolution to the internet. This further secures your enterprise security posture for accessing Studio from a corporate network for building highly secure machine learning workloads on SageMaker. In part 2 of this series, we further extend this solution to demonstrate how to build a private API for accessing Studio with aws:sourceVPCE IAM policy validation and token authentication. Try out this solution and leave your feedback in the comments!

About the Authors

Ram Vittal is a machine learning solutions architect at AWS. He has over 20+ years of experience architecting and building distributed, hybrid and cloud applications. He is passionate about building secure and scalable AI/ML and Big Data solutions to help enterprise customers with their cloud adoption and optimization journey to improve their business outcomes. In his spare time, he enjoys tennis and photography.

Neelam Koshiya is an enterprise solution architect at AWS. Her current focus is to help enterprise customers with their cloud adoption journey for strategic business outcomes. In her spare time, she enjoys reading and being outdoors.



Source

Continue Reading

Amazon

Use a custom image to bring your own development environment to RStudio on Amazon SageMaker

RStudio on Amazon SageMaker is the industry’s first fully managed RStudio Workbench in cloud. You can quickly launch the familiar RStudio integrated development environment (IDE), and dial up and down the underlying compute resources without interrupting your work, making it easy to build machine learning (ML) and analytics solutions in R at scale. RStudio on…

Published

on

By

RStudio on Amazon SageMaker is the industry’s first fully managed RStudio Workbench in cloud. You can quickly launch the familiar RStudio integrated development environment (IDE), and dial up and down the underlying compute resources without interrupting your work, making it easy to build machine learning (ML) and analytics solutions in R at scale. RStudio on SageMaker already comes with a built-in image preconfigured with R programming and data science tools; however, you often need to customize your IDE environment. Starting today, you can bring your own custom image with packages and tools of your choice, and make them available to all the users of RStudio on SageMaker in a few clicks.

Bringing your own custom image has several benefits. You can standardize and simplify the getting started experience for data scientists and developers by providing a starter image, preconfigure the drivers required for connecting to data stores, or pre-install specialized data science software for your business domain. Furthermore, organizations that have previously hosted their own RStudio Workbench may have existing containerized environments that they want to continue to use in RStudio on SageMaker.

In this post, we share step-by-step instructions to create a custom image and bring it to RStudio on SageMaker using the AWS Management Console or AWS Command Line Interface (AWS CLI). You can get your first custom IDE environment up and running in few simple steps. For more information on the content discussed in this post, refer to Bring your own RStudio image.

Solution overview

When a data scientist starts a new session in RStudio on SageMaker, a new on-demand ML compute instance is provisioned and a container image that defines the runtime environment (operating system, libraries, R versions, and so on) is run on the ML instance. You can provide your data scientists multiple choices for the runtime environment by creating custom container images and making them available on the RStudio Workbench launcher, as shown in the following screenshot.

The following diagram describes the process to bring your custom image. First you build a custom container image from a Dockerfile and push it to a repository in Amazon Elastic Container Registry (Amazon ECR). Next, you create a SageMaker image that points to the container image in Amazon ECR, and attach that image to your SageMaker domain. This makes the custom image available for launching a new session in RStudio.

Prerequisites

To implement this solution, you must have the following prerequisites:

We provide more details on each in this section.

RStudio on SageMaker domain

If you have an existing SageMaker domain with RStudio enabled prior to April 7, 2022, you must delete and recreate the RStudioServerPro app under the user profile name domain-shared to get the latest updates for bring your own custom image capability. The AWS CLI commands are as follows. Note that this action interrupts RStudio users on SageMaker.

aws sagemaker delete-app –domain-id –app-type RStudioServerPro –app-name default –user-profile-name domain-shared aws sagemaker create-app –domain-id –app-type RStudioServerPro –app-name default –user-profile-name domain-shared

If this is your first time using RStudio on SageMaker, follow the step-by-step setup process described in Get started with RStudio on Amazon SageMaker, or run the following AWS CloudFormation template to set up your first RStudio on SageMaker domain. If you already have a working RStudio on SageMaker domain, you can skip this step.

The following RStudio on SageMaker CloudFormation template requires an RStudio license approved through AWS License Manager. For more about licensing, refer to RStudio license. Also note that only one SageMaker domain is permitted per AWS Region, so you’ll need to use an AWS account and Region that doesn’t have an existing domain.

  1. Choose Launch Stack.
    Launch stack button
    The link takes you to the us-east-1 Region, but you can change to your preferred Region.
  2. In the Specify template section, choose Next.
  3. In the Specify stack details section, for Stack name, enter a name.
  4. For Parameters, enter a SageMaker user profile name.
  5. Choose Next.
  6. In the Configure stack options section, choose Next.
  7. In the Review section, select I acknowledge that AWS CloudFormation might create IAM resources and choose Next.
  8. When the stack status changes to CREATE_COMPLETE, go to the Control Panel on the SageMaker console to find the domain and the new user.

IAM policies to interact with Amazon ECR

To interact with your private Amazon ECR repositories, you need the following IAM permissions in the IAM user or role you’ll use to build and push Docker images:

{ “Version”:”2012-10-17″, “Statement”:[ { “Sid”: “VisualEditor0”, “Effect”:”Allow”, “Action”:[ “ecr:CreateRepository”, “ecr:BatchGetImage”, “ecr:CompleteLayerUpload”, “ecr:DescribeImages”, “ecr:DescribeRepositories”, “ecr:UploadLayerPart”, “ecr:ListImages”, “ecr:InitiateLayerUpload”, “ecr:BatchCheckLayerAvailability”, “ecr:PutImage” ], “Resource”: “*” } ] }

To initially build from a public Amazon ECR image as shown in this post, you need to attach the AWS-managed AmazonElasticContainerRegistryPublicReadOnly policy to your IAM user or role as well.

To build a Docker container image, you can use either a local Docker client or the SageMaker Docker Build CLI tool from a terminal within RStudio on SageMaker. For the latter, follow the prerequisites in Using the Amazon SageMaker Studio Image Build CLI to build container images from your Studio notebooks to set up the IAM permissions and CLI tool.

AWS CLI versions

There are minimum version requirements for the AWS CLI tool to run the commands mentioned in this post. Make sure to upgrade AWS CLI on your terminal of choice:

  • AWS CLI v1 >= 1.23.6
  • AWS CLI v2 >= 2.6.2

Prepare a Dockerfile

You can customize your runtime environment in RStudio in a Dockerfile. Because the customization depends on your use case and requirements, we show you the essentials and the most common customizations in this example. You can download the full sample Dockerfile.

Install RStudio Workbench session components

The most important software to install in your custom container image is RStudio Workbench. We download from the public S3 bucket hosted by RStudio PBC. There are many version releases and OS distributions for use. The version of the installation needs to be compatible with the RStudio Workbench version used in RStudio on SageMaker, which is 1.4.1717-3 at the time of writing. The OS (argument OS in the following snippet) needs to match the base OS used in the container image. In our sample Dockerfile, the base image we use is Amazon Linux 2 from an AWS-managed public Amazon ECR repository. The compatible RStudio Workbench OS is centos7.

FROM public.ecr.aws/amazonlinux/amazonlinux … ARG RSW_VERSION=1.4.1717-3 ARG RSW_NAME=rstudio-workbench-rhel ARG OS=centos7 ARG RSW_DOWNLOAD_URL=https://s3.amazonaws.com/rstudio-ide-build/server/${OS}/x86_64 RUN RSW_VERSION_URL=`echo -n “${RSW_VERSION}” | sed ‘s/+/-/g’` && curl -o rstudio-workbench.rpm ${RSW_DOWNLOAD_URL}/${RSW_NAME}-${RSW_VERSION_URL}-x86_64.rpm && yum install -y rstudio-workbench.rpm

You can find all the OS release options with the following command:

aws s3 ls s3://rstudio-ide-build/server/

Install R (and versions of R)

The runtime for your custom RStudio container image needs at least one version of R. We can first install a version of R and make it the default R by creating soft links to /usr/local/bin/:

# Install main R version ARG R_VERSION=4.1.3 RUN curl -O https://cdn.rstudio.com/r/centos-7/pkgs/R-${R_VERSION}-1-1.x86_64.rpm && yum install -y R-${R_VERSION}-1-1.x86_64.rpm && yum clean all && rm -rf R-${R_VERSION}-1-1.x86_64.rpm RUN ln -s /opt/R/${R_VERSION}/bin/R /usr/local/bin/R && ln -s /opt/R/${R_VERSION}/bin/Rscript /usr/local/bin/Rscript

Data scientists often need multiple versions of R so that they can easily switch between projects and code base. RStudio on SageMaker supports easy switching between R versions, as shown in the following screenshot.

RStudio on SageMaker automatically scans and discovers versions of R in the following directories:

/usr/lib/R /usr/lib64/R /usr/local/lib/R /usr/local/lib64/R /opt/local/lib/R /opt/local/lib64/R /opt/R/* /opt/local/R/*

We can install more versions in the container image, as shown in the following snippet. They will be installed in /opt/R/.

RUN curl -O https://cdn.rstudio.com/r/centos-7/pkgs/R-4.0.5-1-1.x86_64.rpm && yum install -y R-4.0.5-1-1.x86_64.rpm && yum clean all && rm -rf R-4.0.5-1-1.x86_64.rpm RUN curl -O https://cdn.rstudio.com/r/centos-7/pkgs/R-3.6.3-1-1.x86_64.rpm && yum install -y R-3.6.3-1-1.x86_64.rpm && yum clean all && rm -rf R-3.6.3-1-1.x86_64.rpm RUN curl -O https://cdn.rstudio.com/r/centos-7/pkgs/R-3.5.3-1-1.x86_64.rpm && yum install -y R-3.5.3-1-1.x86_64.rpm && yum clean all && rm -rf R-3.5.3-1-1.x86_64.rpm

Install RStudio Professional Drivers

Data scientists often need to access data from sources such as Amazon Athena and Amazon Redshift within RStudio on SageMaker. You can do so using RStudio Professional Drivers and RStudio Connections. Make sure you install the relevant libraries and drivers as shown in the following snippet:

# Install RStudio Professional Drivers —————————————-# RUN yum update -y && yum install -y unixODBC unixODBC-devel && yum clean all ARG DRIVERS_VERSION=2021.10.0-1 RUN curl -O https://drivers.rstudio.org/7C152C12/installer/rstudio-drivers-${DRIVERS_VERSION}.el7.x86_64.rpm && yum install -y rstudio-drivers-${DRIVERS_VERSION}.el7.x86_64.rpm && yum clean all && rm -f rstudio-drivers-${DRIVERS_VERSION}.el7.x86_64.rpm && cp /opt/rstudio-drivers/odbcinst.ini.sample /etc/odbcinst.ini RUN /opt/R/${R_VERSION}/bin/R -e ‘install.packages(“odbc”, repos=”https://packagemanager.rstudio.com/cran/__linux__/centos7/latest”)’

Install custom libraries

You can also install additional R and Python libraries so that data scientists don’t need to install them on the fly:

RUN /opt/R/${R_VERSION}/bin/R -e “install.packages(c(‘reticulate’, ‘readr’, ‘curl’, ‘ggplot2’, ‘dplyr’, ‘stringr’, ‘fable’, ‘tsibble’, ‘dplyr’, ‘feasts’, ‘remotes’, ‘urca’, ‘sodium’, ‘plumber’, ‘jsonlite’), repos=’https://packagemanager.rstudio.com/cran/__linux__/centos7/latest’)” RUN /opt/python/${PYTHON_VERSION}/bin/pip install –upgrade ‘boto3>1.0<2.0' 'awscli>1.0<2.0' 'sagemaker[local]<3' 'sagemaker-studio-image-build' 'numpy'

When you’ve finished your customization in a Dockerfile, it’s time to build a container image and push it to Amazon ECR.

Build and push to Amazon ECR

You can build a container image from the Dockerfile from a terminal where the Docker engine is installed, such as your local terminal or AWS Cloud9. If you’re building it from a terminal within RStudio on SageMaker, you can use SageMaker Studio Image Build. We demonstrate the steps for both approaches.

In a local terminal where the Docker engine is present, you can run the following commands from where the Dockerfile is. You can use the sample script create-and-update-image.sh.

IMAGE_NAME=r-4.1.3-rstudio-1.4.1717-3 # the name for SageMaker Image REPO=rstudio-custom # ECR repository name TAG=$IMAGE_NAME # login to your Amazon ECR aws ecr get-login-password | docker login –username AWS –password-stdin ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com # create a repo aws ecr create-repository –repository-name ${REPO} # build a docker image and push it to the repo docker build . -t ${REPO}:${TAG} -t ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/${REPO}:${TAG} docker push ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/${REPO}:${TAG}

In a terminal on RStudio on SageMaker, run the following commands:

pip install sagemaker-studio-image-build sm-docker build . –repository ${REPO}:${IMAGE_NAME}

After these commands, you have a repository and a Docker container image in Amazon ECR for our next step, in which we attach the container image for use in RStudio on SageMaker. Note the image URI in Amazon ECR .dkr.ecr..amazonaws.com/: for later use.

Update RStudio on SageMaker through the console

RStudio on SageMaker allows runtime customization through the use of a custom SageMaker image. A SageMaker image is a holder for a set of SageMaker image versions. Each image version represents a container image that is compatible with RStudio on SageMaker and stored in an Amazon ECR repository. To make a custom SageMaker image available to all RStudio users within a domain, you can attach the image to the domain following the steps in this section.

  1. On the SageMaker console, navigate to the Custom SageMaker Studio images attached to domain page, and choose Attach image.
  2. Select New image, and enter your Amazon ECR image URI.
  3. Choose Next.
  4. In the Image properties section, provide an Image name (required), Image display name (optional), Description (optional), IAM role, and tags.
    The image display name, if provided, is shown in the session launcher in RStudio on SageMaker. If the Image display name field is left empty, the image name is shown in RStudio on SageMaker instead.
  5. Leave EFS mount path and Advanced configuration (User ID and Group ID) as default because RStudio on SageMaker manages the configuration for us.
  6. In the Image type section, select RStudio image.
  7. Choose Submit.

You can now see a new entry in the list. It’s worth noting that, with the introduction of the support of custom RStudio images, you can see a new Usage type column in the table to denote whether an image is an RStudio image or an Amazon SageMaker Studio image.

It may take up to 5–10 minutes for the custom images to be available in the session launcher UI. You can then launch a new R session in RStudio on SageMaker with your custom images.

Over time, you may want to retire old and outdated images. To remove the custom images from the list of custom images in RStudio, select the images in the list and choose Detach.

Choose Detach again to confirm.

Update RStudio on SageMaker via the AWS CLI

The following sections describe the steps to create a SageMaker image and attach it for use in RStudio on SageMaker on the SageMaker console and using the AWS CLI. You can use the sample script create-and-update-image.sh.

Create the SageMaker image and image version

The first step is to create a SageMaker image from the custom container image in Amazon ECR by running the following two commands:

ROLE_ARN= DISPLAY_NAME=RSession-r-4.1.3-rstudio-1.4.1717-3 aws sagemaker create-image –image-name ${IMAGE_NAME} –display-name ${DISPLAY_NAME} –role-arn ${ROLE_ARN} aws sagemaker create-image-version –image-name ${IMAGE_NAME} –base-image “${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/${REPO}:${TAG}”

Note that the custom image displayed in the session launcher in RStudio on SageMaker is determined by the input of –display-name. If the optional display name is not provided, the input of –image-name is used instead. Also note that the IAM role allows SageMaker to attach an Amazon ECR image to RStudio on SageMaker.

Create an AppImageConfig

In addition to a SageMaker image, which captures the image URI from Amazon ECR, an app image configuration (AppImageConfig) is required for use in a SageMaker domain. We simplify the configuration for an RSessionApp image so we can just create a placeholder configuration with the following command:

IMAGE_CONFIG_NAME=r-4-1-3-rstudio-1-4-1717-3 aws sagemaker create-app-image-config –app-image-config-name ${IMAGE_CONFIG_NAME}

Attach to a SageMaker domain

With the SageMaker image and the app image configuration created, we’re ready to attach the custom container image to the SageMaker domain. To make a custom SageMaker image available to all RStudio users within a domain, you attach the image to the domain as a default user setting. All existing users and any new users will be able to use the custom image.

For better readability, we place the following configuration into the JSON file default-user-settings.json:

“DefaultUserSettings”: { “RSessionAppSettings”: { “CustomImages”: [ { “ImageName”: “r-4.1.3-rstudio-2022”, “AppImageConfigName”: “r-4-1-3-rstudio-2022” }, { “ImageName”: “r-4.1.3-rstudio-1.4.1717-3”, “AppImageConfigName”: “r-4-1-3-rstudio-1-4-1717-3” } ] } } }

In this file, we can specify the image and AppImageConfig name pairs in a list in DefaultUserSettings.RSessionAppSettings.CustomImages. This preceding snippet assumes two custom images are being created.

Then run the following command to update the SageMaker domain:

aws sagemaker update-domain –domain-id –cli-input-json file://default-user-settings.json

After you update the domaim, it may take up to 5–10 minutes for the custom images to be available in the session launcher UI. You can then launch a new R session in RStudio on SageMaker with your custom images.

Detach images from a SageMaker domain

You can detach images simply by removing the ImageName and AppImageConfigName pairs from default-user-settings.json and updating the domain.

For example, updating the domain with the following default-user-settings.json removes r-4.1.3-rstudio-2022 from the R session launching UI and leaves r-4.1.3-rstudio-1.4.1717-3 as the only custom image available to all users in a domain:

{ “DefaultUserSettings”: { “RSessionAppSettings”: { “CustomImages”: [ { “ImageName”: “r-4.1.3-rstudio-1.4.1717-3”, “AppImageConfigName”: “r-4-1-3-rstudio-1-4-1717-3” } ] } } }

Clean up

To safely remove images and resources in the SageMaker domain, complete the following steps in Clean up image resources.

To safely remove the RStudio on SageMaker and the SageMaker domain, complete the following steps in Delete an Amazon SageMaker Domain to delete any RSessionGateway app, user profile and the domain.

To safely remove images and repositories in Amazon ECR, complete the following steps in Deleting an image.

Finally, to delete the CloudFormation template:

  1. On the AWS CloudFormation console, choose Stacks.
  2. Select the stack you deployed for this solution.
  3. Choose Delete.

Conclusion

RStudio on SageMaker makes it simple for data scientists to build ML and analytic solutions in R at scale, and for administrators to manage a robust data science environment for their developers. Data scientists want to customize the environment so that they can use the right libraries for the right job and achieve the desired reproducibility for each ML project. Administrators need to standardize the data science environment for regulatory and security reasons. You can now create custom container images that meet your organizational requirements and allow data scientists to use them in RStudio on SageMaker.

We encourage you to try it out. Happy developing!

About the Authors

Michael Hsieh is a Senior AI/ML Specialist Solutions Architect. He works with customers to advance their ML journey with a combination of AWS ML offerings and his ML domain knowledge. As a Seattle transplant, he loves exploring the great Mother Nature the city has to offer, such as the hiking trails, scenery kayaking in the SLU, and the sunset at Shilshole Bay.

Declan Kelly is a Software Engineer on the Amazon SageMaker Studio team. He has been working on Amazon SageMaker Studio since its launch at AWS re:Invent 2019. Outside of work, he enjoys hiking and climbing.

Sean MorganSean Morgan is an AI/ML Solutions Architect at AWS. He has experience in the semiconductor and academic research fields, and uses his experience to help customers reach their goals on AWS. In his free time, Sean is an active open-source contributor and maintainer, and is the special interest group lead for TensorFlow Add-ons.



Source

Continue Reading

Trending

Copyright © 2021 Today's Digital.