Connect with us

Amazon

Introducing Karpenter – An Open-Source High-Performance Kubernetes Cluster Autoscaler

Today we are announcing that Karpenter is ready for production. Karpenter is an open-source, flexible, high-performance Kubernetes cluster autoscaler built with AWS. It helps improve your application availability and cluster efficiency by rapidly launching right-sized compute resources in response to changing application load. Karpenter also provides just-in-time compute resources to meet your application’s needs and…

Published

on

Today we are announcing that Karpenter is ready for production. Karpenter is an open-source, flexible, high-performance Kubernetes cluster autoscaler built with AWS. It helps improve your application availability and cluster efficiency by rapidly launching right-sized compute resources in response to changing application load. Karpenter also provides just-in-time compute resources to meet your application’s needs and will soon automatically optimize a cluster’s compute resource footprint to reduce costs and improve performance.

Before Karpenter, Kubernetes users needed to dynamically adjust the compute capacity of their clusters to support applications using Amazon EC2 Auto Scaling groups and the Kubernetes Cluster Autoscaler. Nearly half of Kubernetes customers on AWS report that configuring cluster auto scaling using the Kubernetes Cluster Autoscaler is challenging and restrictive.

When Karpenter is installed in your cluster, Karpenter observes the aggregate resource requests of unscheduled pods and makes decisions to launch new nodes and terminate them to reduce scheduling latencies and infrastructure costs. Karpenter does this by observing events within the Kubernetes cluster and then sending commands to the underlying cloud provider’s compute service, such as Amazon EC2.

Karpenter is an open-source project licensed under the Apache License 2.0. It is designed to work with any Kubernetes cluster running in any environment, including all major cloud providers and on-premises environments. We welcome contributions to build additional cloud providers or to improve core project functionality. If you find a bug, have a suggestion, or have something to contribute, please engage with us on GitHub.

Getting Started with Karpenter on AWS
To get started with Karpenter in any Kubernetes cluster, ensure there is some compute capacity available, and install it using the Helm charts provided in the public repository. Karpenter also requires permissions to provision compute resources on the provider of your choice.

Once installed in your cluster, the default Karpenter provisioner will observe incoming Kubernetes pods, which cannot be scheduled due to insufficient compute resources in the cluster and automatically launch new resources to meet their scheduling and resource requirements.

I want to show a quick start using Karpenter in an Amazon EKS cluster based on Getting Started with Karpenter on AWS. It requires the installation of AWS Command Line Interface (AWS CLI), kubectl, eksctl, and Helm (the package manager for Kubernetes). After setting up these tools, create a cluster with eksctl. This example configuration file specifies a basic cluster with one initial node.

cat < cluster.yaml — apiVersion: eksctl.io/v1alpha5 kind: ClusterConfig metadata: name: eks-karpenter-demo region: us-east-1 version: “1.20” managedNodeGroups: – instanceType: m5.large amiFamily: AmazonLinux2 name: eks-kapenter-demo-ng desiredCapacity: 1 minSize: 1 maxSize: 5 EOF $ eksctl create cluster -f cluster.yaml

Karpenter itself can run anywhere, including on self-managed node groups, managed node groups, or AWS Fargate. Karpenter will provision EC2 instances in your account.

Next, you need to create necessary AWS Identity and Access Management (IAM) resources using the AWS CloudFormation template and IAM Roles for Service Accounts (IRSA) for the Karpenter controller to get permissions like launching instances following the documentation. You also need to install the Helm chart to deploy Karpenter to your cluster.

$ helm repo add karpenter https://charts.karpenter.sh $ helm repo update $ helm upgrade –install –skip-crds karpenter karpenter/karpenter –namespace karpenter –create-namespace –set serviceAccount.create=false –version 0.5.0 –set controller.clusterName=eks-karpenter-demo –set controller.clusterEndpoint=$(aws eks describe-cluster –name eks-karpenter-demo –query “cluster.endpoint” –output json) –wait # for the defaulting webhook to install before creating a Provisioner

Karpenter provisioners are a Kubernetes resource that enables you to configure the behavior of Karpenter in your cluster. When you create a default provisioner, without further customization besides what is needed for Karpenter to provision compute resources in your cluster, Karpenter automatically discovers node properties such as instance types, zones, architectures, operating systems, and purchase types of instances. You don’t need to define these spec:requirements if there is no explicit business requirement.

cat <The ttlSecondsAfterEmpty value configures Karpenter to terminate empty nodes. If this value is disabled, nodes will never scale down due to low utilization. To learn more, see Provisioner custom resource definitions (CRDs) on the Karpenter site.

Karpenter is now active and ready to begin provisioning nodes in your cluster. Create some pods using a deployment, and watch Karpenter provision nodes in response.

$ kubectl create deployment –name inflate –image=public.ecr.aws/eks-distro/kubernetes/pause:3.2

Let’s scale the deployment and check out the logs of the Karpenter controller.

$ kubectl scale deployment inflate –replicas 10 $ kubectl logs -f -n karpenter $(kubectl get pods -n karpenter -l karpenter=controller -o name) 2021-11-23T04:46:11.280Z INFO controller.allocation.provisioner/default Starting provisioning loop {“commit”: “abc12345”} 2021-11-23T04:46:11.280Z INFO controller.allocation.provisioner/default Waiting to batch additional pods {“commit”: “abc123456”} 2021-11-23T04:46:12.452Z INFO controller.allocation.provisioner/default Found 9 provisionable pods {“commit”: “abc12345”} 2021-11-23T04:46:13.689Z INFO controller.allocation.provisioner/default Computed packing for 10 pod(s) with instance type option(s) [m5.large] {“commit”: ” abc123456″} 2021-11-23T04:46:16.228Z INFO controller.allocation.provisioner/default Launched instance: i-01234abcdef, type: m5.large, zone: us-east-1a, hostname: ip-192-168-0-0.ec2.internal {“commit”: “abc12345”} 2021-11-23T04:46:16.265Z INFO controller.allocation.provisioner/default Bound 9 pod(s) to node ip-192-168-0-0.ec2.internal {“commit”: “abc12345”} 2021-11-23T04:46:16.265Z INFO controller.allocation.provisioner/default Watching for pod events {“commit”: “abc12345”}

The provisioner’s controller listens for Pods changes, which launched a new instance and bound the provisionable Pods into the new nodes.

Now, delete the deployment. After 30 seconds (ttlSecondsAfterEmpty = 30), Karpenter should terminate the empty nodes.

$ kubectl delete deployment inflate $ kubectl logs -f -n karpenter $(kubectl get pods -n karpenter -l karpenter=controller -o name) 2021-11-23T04:46:18.953Z INFO controller.allocation.provisioner/default Watching for pod events {“commit”: “abc12345”} 2021-11-23T04:49:05.805Z INFO controller.Node Added TTL to empty node ip-192-168-0-0.ec2.internal {“commit”: “abc12345”} 2021-11-23T04:49:35.823Z INFO controller.Node Triggering termination after 30s for empty node ip-192-168-0-0.ec2.internal {“commit”: “abc12345”} 2021-11-23T04:49:35.849Z INFO controller.Termination Cordoned node ip-192-168-116-109.ec2.internal {“commit”: “abc12345”} 2021-11-23T04:49:36.521Z INFO controller.Termination Deleted node ip-192-168-0-0.ec2.internal {“commit”: “abc12345”}

If you delete a node with kubectl, Karpenter will gracefully cordon, drain, and shut down the corresponding instance. Under the hood, Karpenter adds a finalizer to the node object, which blocks deletion until all pods are drained, and the instance is terminated.

Things to Know
Here are a couple of things to keep in mind about Kapenter features:

Accelerated Computing: Karpenter works with all kinds of Kubernetes applications, but it performs particularly well for use cases that require rapid provisioning and deprovisioning large numbers of diverse compute resources quickly. For example, this includes batch jobs to train machine learning models, run simulations, or perform complex financial calculations. You can leverage custom resources of nvidia.com/gpu, amd.com/gpu, and aws.amazon.com/neuron for use cases that require accelerated EC2 instances.

Provisioners Compatibility: Kapenter provisioners are designed to work alongside static capacity management solutions like Amazon EKS managed node groups and EC2 Auto Scaling groups. You may choose to manage the entirety of your capacity using provisioners, a mixed model with both dynamic and statically managed capacity, or a fully static approach. We recommend not using Kubernetes Cluster Autoscaler at the same time as Karpenter because both systems scale up nodes in response to unschedulable pods. If configured together, both systems will race to launch or terminate instances for these pods.

Join our Karpenter Community
Karpenter’s community is open to everyone. Give it a try, and join our working group meeting, or follow our roadmap for future releases that interest you. As I said, we welcome any contributions such as bug reports, new features, corrections, or additional documentation.

To learn more about Karpenter, see the documentation and demo video from AWS Container Day.

Channy



Source

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Amazon

How Amazon Finance Automation built a generative AI Q&A chat assistant using Amazon Bedrock

Amazon Finance Automation developed a large language model (LLM)-based question-answer chat assistant on Amazon Bedrock. This solution empowers analysts to rapidly retrieve answers to customer queries, generating prompt responses within the same communication thread. As a result, it drastically reduces the time required to address customer queries. In this post, we share how Amazon Finance…

Published

on

By

Amazon Finance Automation developed a large language model (LLM)-based question-answer chat assistant on Amazon Bedrock. This solution empowers analysts to rapidly retrieve answers to customer queries, generating prompt responses within the same communication thread. As a result, it drastically reduces the time required to address customer queries. In this post, we share how Amazon Finance Automation built this generative AI Q&A chat assistant using Amazon Bedrock.

Source

Continue Reading

Amazon

Introducing storage optimized Amazon EC2 I8g instances powered by AWS Graviton4 processors and 3rd gen AWS Nitro SSDs

Elevate storage performance with AWS’s newest I8g instances, which deliver unparalleled speed and efficiency for I/O-intensive workloads. Source

Published

on

By

Elevate storage performance with AWS’s newest I8g instances, which deliver unparalleled speed and efficiency for I/O-intensive workloads.

Source

Continue Reading

Amazon

Fast and accurate zero-shot forecasting with Chronos-Bolt and AutoGluon

Chronos models are available for Amazon SageMaker customers through AutoGluon-TimeSeries and Amazon SageMaker JumpStart. In this post, we introduce Chronos-Bolt, our latest FM for forecasting that has been integrated into AutoGluon-TimeSeries. Source

Published

on

By

Chronos models are available for Amazon SageMaker customers through AutoGluon-TimeSeries and Amazon SageMaker JumpStart. In this post, we introduce Chronos-Bolt, our latest FM for forecasting that has been integrated into AutoGluon-TimeSeries.

Source

Continue Reading

Trending

Copyright © 2021 Today's Digital.