Connect with us

Amazon

New – Recycle Bin for EBS Snapshots

It is easy to create EBS Snapshots, and just as easy to either delete them manually or to use the Data Lifecycle Manager to delete them automatically in accord with your organization’s retention model. Sometimes, as it turns out, it is a bit too easy to delete snapshots, and a well-intended cleanup effort or a…

Published

on

It is easy to create EBS Snapshots, and just as easy to either delete them manually or to use the Data Lifecycle Manager to delete them automatically in accord with your organization’s retention model. Sometimes, as it turns out, it is a bit too easy to delete snapshots, and a well-intended cleanup effort or a wayward script can sometimes go a bit overboard!

New Recycle Bin
In order to give you more control over the deletion process, we are launching a Recycle Bin for EBS Snapshots. As you will see in a moment, you can now set up rules to retain deleted snapshots so that you can recover them after an accidental deletion. You can think of this as a two-level model, where individual AWS users are responsible for the initial deletion, and then a designated “Recycle Bin Administrator” (as specified by an IAM role) manages retention and recovery.

Rules can apply to all snapshots, or to snapshots that include a specified set of tag/value pairs. Each rule specifies a retention period (between one day and one year), after which the snapshot is permanently deleted.

Let’s Recycle!
I open the Recycle Bin Console, select the region of interest, and click Create retention rule to begin:

I call my first rule KeepAll, and set it to retain all deleted EBS snapshots for 4 days:

I add a tag (User) to the rule, and click Create retention rule:

Because Apply to all resources is checked, this is a general rule that applies when there are no applicable rules that specify one or more tags.

Then I create a second rule (KeepDev) that retains snapshots tagged with a Mode of Dev for just one day:

If two different tag-based rules match the same resource, then the one with the longer retention period applies.

Here are my retention rules:

Here are my EBS snapshots. As you can see, the first three are tagged with a Mode of Dev:

In an effort to save several cents per month, I impulsively delete them all:

And they are gone:

Later in the day, a member of my developer team messages me in a panic and lets me know that they desperately need the latest snapshot of the development server’s code. I open the Recycle Bin and I locate the snapshot (DevServer_2021_10_6):

I select the snapshot and click Recover:

Then I confirm my intent:

And the snapshot is available once again:

As has always been the case, Fast Snapshot Restore is disabled when a snapshot is deleted. With this launch, it will remain disabled when a snapshot is restored.

All of this functionality (creating rules, listing resources in the Recycle Bin, and restoring them) is also available from the CLI and via the Recycle Bin APIs.

Things to Know
Here are a couple of things to know about the new Recycle Bin:

IAM Support – As I mentioned earlier, you can use AWS Identity and Access Management (IAM) to grant access to this feature, and should consider creating an empowered user known as the Recycle Bin Administrator.

Rule Changes – You can make changes to your retention rules at any time, but be aware that the rules are evaluated (and the retention period is set) when you delete a snapshot. Changing a rule after an item has been deleted will not alter the retention period for the item.

Pricing – Resources that are in the Recycle Bin are charged the usual price, but be aware that creating rules with long retention periods could increase your AWS bill. On a related note, be sure that keeping deleted snapshots around does not violate your organization’s data retention policies. There is no charge for deleting or recovering a resource.

In the Bin – Resources in the Recycle Bin are immutable. If a resource is recovered, all of its existing metadata (tags and so forth) is also recovered intact.

Recycling  – We will do our best to recycle all of the zeroes and all of the ones once when a resource in your Recycle Bin reaches the end of its retention period!

Jeff;



Source

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Amazon

Reducing hallucinations in LLM agents with a verified semantic cache using Amazon Bedrock Knowledge Bases

This post introduces a solution to reduce hallucinations in Large Language Models (LLMs) by implementing a verified semantic cache using Amazon Bedrock Knowledge Bases, which checks if user questions match curated and verified responses before generating new answers. The solution combines the flexibility of LLMs with reliable, verified answers to improve response accuracy, reduce latency,…

Published

on

By

This post introduces a solution to reduce hallucinations in Large Language Models (LLMs) by implementing a verified semantic cache using Amazon Bedrock Knowledge Bases, which checks if user questions match curated and verified responses before generating new answers. The solution combines the flexibility of LLMs with reliable, verified answers to improve response accuracy, reduce latency, and lower costs while preventing potential misinformation in critical domains such as healthcare, finance, and legal services.

Source

Continue Reading

Amazon

Orchestrate an intelligent document processing workflow using tools in Amazon Bedrock

This intelligent document processing solution uses Amazon Bedrock FMs to orchestrate a sophisticated workflow for handling multi-page healthcare documents with mixed content types. The solution uses the FM’s tool use capabilities, accessed through the Amazon Bedrock Converse API. This enables the FMs to not just process text, but to actively engage with various external tools…

Published

on

By

This intelligent document processing solution uses Amazon Bedrock FMs to orchestrate a sophisticated workflow for handling multi-page healthcare documents with mixed content types. The solution uses the FM’s tool use capabilities, accessed through the Amazon Bedrock Converse API. This enables the FMs to not just process text, but to actively engage with various external tools and APIs to perform complex document analysis tasks.

Source

Continue Reading

Amazon

AWS and DXC collaborate to deliver customizable, near real-time voice-to-voice translation capabilities for Amazon Connect

In this post, we discuss how AWS and DXC used Amazon Connect and other AWS AI services to deliver near real-time V2V translation capabilities. Source

Published

on

By

In this post, we discuss how AWS and DXC used Amazon Connect and other AWS AI services to deliver near real-time V2V translation capabilities.

Source

Continue Reading

Trending

Copyright © 2021 Today's Digital.