Connect with us

Amazon

AWS computer vision and Amazon Rekognition: AWS recognized as an IDC MarketScape Leader in Asia Pacific (excluding Japan), up to 38% price cut, and major new features

Computer vision, the automatic recognition and description of documents, images, and videos, has far-reaching applications, from identifying defects in high-speed assembly lines, to intelligently automating document processing workflows, and identifying products and people in social media. AWS computer vision services, including Amazon Lookout for Vision, AWS Panorama, Amazon Rekognition, and Amazon Textract, help developers automate…

Published

on

Computer vision, the automatic recognition and description of documents, images, and videos, has far-reaching applications, from identifying defects in high-speed assembly lines, to intelligently automating document processing workflows, and identifying products and people in social media. AWS computer vision services, including Amazon Lookout for Vision, AWS Panorama, Amazon Rekognition, and Amazon Textract, help developers automate image, video, and text analysis without requiring machine learning (ML) experience. As a result, you can implement solutions faster and decrease your time to value.

As customers continue to expand their use of computer vision, we have been investing in all of our services to make them easier to apply to use cases, easier to implement with fewer data requirements, and more cost-effective. Recently, AWS was named a Leader in the IDC MarketScape: Asia/Pacific (Excluding Japan) Vision AI Software Platform 2021 Vendor Assessment (Doc # AP47490521, October 2021). The IDC MarketScape evaluated our product functionality, service delivery, research and innovation strategy, and more for three vision AI use cases: productivity, end-user experience, and decision recommendation. They found that our offerings have a product-market fit for all three use cases. The IDC MarketScape recommends that computer vision decision-makers consider AWS for Vision AI services when you need to centrally plan vision AI capabilities in a large-scope initiative, such as digital transformation (DX), or want flexible ways to control costs.

“Vision AI is one of the emerging technology markets,” says Christopher Lee Marshall, Associate Vice President, Artificial Intelligent and Analytics Strategies at IDC Asia Pacific. “AWS is placed in the Leader’s Category in IDC MarketScape: Asia/Pacific (Excluding Japan) Vision AI Software Platform 2021 Vendor Assessment. It’s critical to watch the major vendors and more mature market solutions, as the early movers tend to consolidate their strengths with greater access to training data, more iterations of algorithm variations, deeper understanding of the operational contexts, and more systematic approaches to work with solution partners in the ecosystem.”

A key service of focus in the report was Amazon Rekognition. We’re excited to announce several enhancements to make Amazon Rekognition more cost-effective, more accurate, and easier to implement. First, we’re lowering prices for image APIs. Next, we’re enriching Amazon Rekognition with new features for content moderation, text-in-image analysis, and automated machine learning (AutoML). The new capabilities enable more accurate content moderation workflows, optical character recognition for a broader range of scenarios, and simplified training and deployment of custom computer vision models.

These latest announcements add to the Amazon Textract innovations we introduced recently, where we added TIFF file support, lowered the latency of asynchronous operations by 50%, and reduced prices by up to 32% in eight AWS Regions. The Amazon Textract innovations make it easier, faster, and less expensive to process documents at scale using computer vision on AWS.

Let’s dive deeper into the Amazon Rekognition announcements and product improvements.

Up to 38% price reduction for Amazon Rekognition Image APIs

We want to help you get a better return on investment for computer vision workflows. Therefore, we’re lowering the price for all Amazon Rekognition Image APIs by up to 38%. This price reduction applies to all 14 Regions where the Amazon Rekognition service endpoints are available.

We offer four pricing tiers based on usage volume for Amazon Rekognition Image APIs today: up to 1 million, 1 – 10M, 10 – 100M, and above 100M images processed per month. The price points for these tiers are $0.001, $0.0008, $0.0006, and $0.0004 per image. With this price reduction, we lowered the API volumes that unlock lower prices:

  • We lowered the threshold from 10 million images per month to 5 million images per month for Tier 2. As a result, you can now benefit from a lower Tier 3 price of $0.0006 per image after 5 million images.
  • We lowered the Tier 4 threshold from 100 million images per month to 35 million images per month.

We summarize the volume threshold changes in the following table.

Old volume (images processed per month) New volume (images processed per month)
Tier 1 Unchanged at first 1 million images
Tier 2 Next 9 million images Next 4 million images
Tier 3 Next 90 million images Next 30 million images
Tier 4 Over 100 million images Over 35 million images

Finally, we’re lowering the price per image for the highest-volume tier from $0.0004 to $0.00025 per image for select APIs. The prices in the following table are for the US East (N. Virginia) Region. In summary, the new prices are as follows.

Pricing tier Volume (images per month) Price per image
Images processed by Group 1 APIs: CompareFaces, IndexFaces, SearchFacebyImage, and SearchFaces Images processed by Group 2 APIs: DetectFaces, DetectModerationLabels, DetectLabels, DetectText, and RecognizeCelebrities
Tier 1 First 1 million images $0.00100 $0.00100
Tier 2 Next 4 million images $0.00080 $0.00080
Tier 3 Next 30 million images $0.00060 $0.00060
Tier 4 Over 35 million images $0.00040 $0.00025

Your savings will vary based on your usage. The following table provides example savings for a few scenarios in the US East (N. Virginia) Region.

API Volumes Group 1 & 2 Image APIs: Old Price Group 1 Image APIs Group 2 Image APIs
New Price % Reduction New Price % Reduction
12 Million in a month $9,400 $8,400 -10.6% $8,400 -10.6%
12M Annual (1M in a month) $12,000 $12,000 0.0% $12,000 0.0%
60M in a month $38,200 $32,200 -15.7% $28,450 -25.5%
60M Annual (5M in a month) $50,400 $50,400 0.0% $50,400 0.0%
120M in a month $70,200 $56,200 -19.9% $43,450 -38.1%
120M Annual (10M in a month) $98,400 $86,400 -12.2% $86,400 -12.2%
420M in a month $190,200 $176,200 -7.4% $118,450 -37.7%
420M Annual (35M in a month) $278,400 $266,400 -4.3% $266,400 -4.3%
1.2 Billion in a month $502,200 $488,200 -2.8% $313,450 -37.6%
1.2B Annual (100M in a month) $746,400 $578,400 -22.5% $461,400 -38.2%

Learn more about the price reduction by visiting the pricing page.

Accuracy improvements for content moderation

Organizations need a scalable solution to make sure users aren’t exposed to inappropriate content from user-generated and third-party content in social media, ecommerce, and photo-sharing applications.

The Amazon Rekognition Content Moderation API helps you automatically detect inappropriate or unwanted content to streamline moderation workflows.

With the Amazon Rekognition Content Moderation API, you now get improved accuracy across all ten top-level categories (such as explicit nudity, violence, and tobacco) and all 35 subcategories.

The improvements in image model moderation reduce false positive rates across all moderation categories. Lower false positive rates lead to lower volumes of images flagged for further review by human moderators, reducing their workload and improving efficiency. When combined with a price reduction for image APIs, you get more value for your content moderation solution at lower prices. Learn more about the improved Content Moderation API by visiting Moderating content.

11 Street is an online shopping company. They’re using Amazon Rekognition to automate the review of images and videos. “As part of 11st’s interactive experience, and to empower our community to express themselves, we have a feature where users can submit a photo or video review of the product they have just purchased. For example, a user could submit a photo of themselves wearing the new makeup they just bought. To make sure that no images or videos contain content that is prohibited by our platform guidelines, we originally resorted to manual content moderation. We quickly found that this was costly, error-prone, and not scalable. We then turned to Amazon Rekognition for Content Moderation, and found that it was easy to test, deploy, and scale. We are now able to automate the review of more than 7,000 uploaded images and videos every day with Amazon Rekognition, saving us time and money. We look forward to the new model update that the Amazon Rekognition team is releasing soon.” – 11 Street Digital Transformation team

Flipboard is a content recommendation platform that enables publishers, creators, and curators to share stories with readers to help them stay up to date on their passions and interests. Says Anuj Ahooja, Senior Engineering Manager at Flipboard: “On average, Flipboard processes approximately 90 million images per day. To maintain a safe and inclusive environment and to confirm that all images comply with platform guidelines at scale, it is crucial to implement a content moderation workflow using ML. However, building models for this system internally was labor-intensive and lacked the accuracy necessary to meet the high-quality standards Flipboard users expect. This is where Amazon Rekognition became the right solution for our product. Amazon Rekognition is a highly accurate, easily deployed, and performant content moderation platform that provides a robust moderation taxonomy. Since putting Amazon Rekognition into our workflows, we’ve been catching approximately 63,000 images that violate our standards per day. Moreover, with frequent improvements like the latest content moderation model update, we can be confident that Amazon Rekognition will continue to help make Flipboard an even more inclusive and safe environment for our users over time.”

Yelp connects people with great local businesses. With unmatched local business information, photos, and review content, Yelp provides a one-stop local platform for consumers to discover, connect, and transact with local businesses of all sizes by making it easy to request a quote, join a waitlist, and make a reservation, appointment, or purchase. Says Alkis Zoupas, Head of Trust and Safety Engineering at Yelp: “Yelp’s mission is to connect people with great local businesses, and we take significant measures to give people access to reliable and useful information. As part of our multi-stage, multi-model approach to photo classification, we use Amazon Rekognition to tune our systems for various outcomes and levels of filtering. Amazon Rekognition has helped reduce development time, allowing us to be more effective with our resource utilization and better prioritize what our teams should focus on.”

Support for seven more languages and accuracy improvements for text analysis

Customers use the Amazon Rekognition text service for a variety of applications, such as ensuring compliance of images with corporate policies, analysis of marketing assets, and reading street signs. With the Amazon Rekognition DetectText API, you can detect text in images and check it against your list of inappropriate words and phrases. In addition, you can further enable content redaction by using the detected text bounding box area to blur sensitive information.

The newest version of the DetectText API now supports Arabic, French, German, Italian, Portuguese, Russian, and Spanish languages in addition to English. The DetectText API also provides improved accuracy for detecting curved and vertical text in images. With the expanded language support and higher accuracy for curved and vertical text, you can scale and improve your content moderation, text moderation, and other text detection workflows.

OLX Group is one of the world’s fastest-growing networks of trading platforms, with operations in over 30 countries and over 20 brands worldwide. Says Jaroslaw Szymczak, Data Science Manager at OLX Group: “As a leader in the classifieds marketplace sector, and to foster a safe, inclusive, and vibrant buying and selling community, it is paramount that we make sure that all products listed on our platforms comply with our rules for product display and authenticity. To do that, among other aspects of the ads, we have placed focus on analyzing the non-organic text featured on images uploaded by our users. We tested Amazon Rekognition’s text detection functionality for this purpose and found that it was highly accurate and augmented our in-house violations detection systems, helping us improve our moderation workflows. Using Amazon Rekognition for text detection, we were able to flag 350,000 policy violations last year. It has also helped us save significant amounts in development costs and has allowed us to refocus data science time on other projects. We are very excited about the upcoming text model update as it will even further expand our capabilities for text analysis.”

VidMob is a leading creative analytics platform that uses data to understand the audience, improve ads, and increase marketing performance. Says James Kupernick, Chief Technology Officer at VidMob: “At VidMob, our goal is to maximize ROI for our customers by leveraging real-time insights into creative content. We have been working with the Amazon Rekognition team for years to extract meaningful visual metadata from creative content, helping us drive data-driven outcomes for our customers. It is of the utmost importance that our customers get actionable data signals. In turn, we have used Amazon Rekognition’s text detection feature to determine when there is overlaid text in a creative and classify that text in a way that creates unique insights. We can scale this process using the Amazon Rekognition Text API, allowing our data science and engineers teams to create differentiated value. In turn, we are very excited about the new text model update and the addition of new languages so that we can better support our international clients.”

Simplicity and scalability for AutoML

Amazon Rekognition Custom Labels is an AutoML service that allows you to build custom computer vision models to detect objects and scenes in images specific to your business needs. For example, with Rekognition Custom Labels, you can develop solutions for detecting brand logos, proprietary machine parts, and items on store shelves without the need for in-depth ML expertise. Instead, your critical ML experts can continue working on higher-value projects.

With the new capabilities in Rekognition Custom Labels, you can simplify and scale your workflows for custom computer vision models.

First, you can train your computer vision model in four simple steps with a few clicks. You get a guided step-by-step console experience with directions for creating projects, creating image datasets, annotating and labeling images, and training models.

Next, we improved our underlying ML algorithms. As a result, you can now build high-quality models with less training data to detect vehicles, their make, or possible damages to vehicles.

Finally, we have introduced seven new APIs to make it even easier for you to build and train computer vision models programmatically. With the new APIs, you can do the following:

  • Create, copy, or delete datasets
  • List the contents and get details of the datasets
  • Modify datasets and auto-split them to create a test dataset

For more information, visit the Rekognition Custom Labels Guide.

Prodege, LLC is a cutting-edge marketing and consumer insights platform that leverages its global audience of reward program members to power its business solutions. Prodege uses Rekognition Custom Labels to detect anomalies in store receipts. Says Arun Gupta, Director, Business Intelligence at Prodege: “By using Rekognition Custom Labels, Prodege was able to detect anomalies with high precision across store receipt images being uploaded by our valued members as part of our rewards program offerings. The best part of Rekognition Custom Labels is that it’s easy to set up and requires only a small set of pre-classified images (a couple of hundred in our case) to train the ML model for high confidence image detection. The model’s endpoints can be easily accessed using the API. Rekognition Custom Labels has been an extremely effective solution to enable the smooth functioning of our validated receipt scanning product and helped us save a lot of time and resources performing manual detection. The new console experience of Rekognition Custom Labels has made it even easier to build and train a model, especially with the added capability of updating and deleting an existing dataset. This will significantly improve our constant iteration of training models as we grow and add more data in the pursuit of enhancing our model performance. I can’t even thank the AWS Support Team enough, who has been diligently helping us with all aspects of the product through this journey.”

Says Arnav Gupta, Global AWS Practice Lead at Quantiphi: “As an advanced consulting partner for AWS, Quantiphi has been leveraging Amazon’s computer vision services such as Amazon Rekognition and Amazon Textract to solve some of our customer’s most pressing business challenges. The simplified and guided experience offered by the updated Rekognition Custom Labels console and the new APIs has made it easier for us to build and train computer vision models, significantly reducing the time to deliver solutions from months to weeks for our customers. We have also built our document processing solution Qdox on top of Amazon Textract, which has enabled us to provide our own industry-specific document processing solutions to customers.”

Get started with Amazon Rekognition

With the new features we’re announcing today, you can increase the accuracy of your content moderation workflows, deploy text moderation solutions across a broader range of scenarios and languages, and simplify your AutoML implementation. In addition, you can use the price reduction on the image APIs to analyze more images with your existing budget. Use one or more of the following options to get started today:

About the Author

Roger Barga is the GM of Computer Vision at AWS.



Source

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published.

Amazon

Secure Amazon SageMaker Studio presigned URLs Part 2: Private API with JWT authentication

In part 1 of this series, we demonstrated how to resolve an Amazon SageMaker Studio presigned URL from a corporate network using Amazon private VPC endpoints without traversing the internet. In this post, we will continue to build on top of the previous solution to demonstrate how to build a private API Gateway via Amazon API…

Published

on

By

In part 1 of this series, we demonstrated how to resolve an Amazon SageMaker Studio presigned URL from a corporate network using Amazon private VPC endpoints without traversing the internet. In this post, we will continue to build on top of the previous solution to demonstrate how to build a private API Gateway via Amazon API Gateway as a proxy interface to generate and access Amazon SageMaker presigned URLs. Furthermore, we add an additional guardrail to ensure presigned URLs are only generated and accessed for the authenticated end-user within the corporate network.

Solution overview

The following diagram illustrates the architecture of the solution.

The process includes the following steps:

  1. In the Amazon Cognito user pool, first set up a user with the name matching their Studio user profile and register Studio as the app client in the user pool.
  2. The user federates from their corporate identity provider (IdP) and authenticates with the Amazon Cognito user pool for accessing Studio.
  3. Amazon Cognito returns a token to the user authorizing access to the Studio application.
  4. The user invokes createStudioPresignedUrl API on API Gateway along with a token in the header.
  5. API Gateway invokes a custom AWS Lambda authorizer and validates the token.
  6. When the token is valid, Amazon Cognito returns an access grant policy with studio user profile id to API Gateway.
  7. API Gateway invokes the createStudioPresignedUrl Lambda function for creating the studio presigned url.
  8. The createStudioPresignedUrl function creates a presigned URL using the SageMaker API VPC endpoint and returns to caller.
  9. User accesses the presigned URL from their corporate network that resolves over the Studio VPC endpoint.
  10. The function’s AWS Identity and Access Management (IAM) policy makes sure that the presigned URL creation and access are performed via VPC endpoints.

The following sections walk you through solution deployment, configuration, and validation for the API Gateway private API for creating and resolving a Studio presigned URL from a corporate network using VPC endpoints.

  1. Deploy the solution
  2. Configure the Amazon Cognito user
  3. Authenticating the private API for the presigned URL using a JSON Web Token
  4. Configure the corporate DNS server for accessing the private API
  5. Test the API Gateway private API for a presigned URL from the corporate network
  6. Pre-Signed URL Lambda Auth Policy
  7. Cleanup

Deploy the solution

You can deploy the solution through either the AWS Management Console or the AWS Serverless Application Model (AWS SAM).

To deploy the solution via the console, launch the following AWS CloudFormation template in your account by choosing Launch Stack. It takes approximately 10 minutes for the CloudFormation stack to complete.

To deploy the solution using AWS SAM, you can find the latest code in the aws-samples GitHub repository, where you can also contribute to the sample code. The following commands show how to deploy the solution using the AWS SAM CLI. If not currently installed, install the AWS SAM CLI.

  1. Clone the repository at https://github.com/aws-samples/secure-sagemaker-studio-presigned-url.
  2. After you clone the repo, navigate to the source and run the following code:

Configure the Amazon Cognito user

To configure your Amazon Cognito user, complete the following steps:

  1. Create an Amazon Cognito user with the same name as a SageMaker user profile: aws cognito-idp admin-create-user –user-pool-id –username
  2. Set the user password: aws cognito-idp admin-set-user-password –user-pool-id –username –password –permanent
  3. Get an access token: aws cognito-idp initiate-auth –auth-flow USER_PASSWORD_AUTH –client-id –auth-parameters USERNAME=,PASSWORD=

Authenticating the private API for the presigned URL using a JSON Web Token

When you deployed a private API for creating a SageMaker presigned URL, you added a guardrail to restrict access to access the presigned URL by anyone outside the corporate network and VPC endpoint. However, without implementing another control to the private API within the corporate network, any internal user within the corporate network would be able to pass unauthenticated parameters for the SageMaker user profile and access any SageMaker app.

To mitigate this issue, we propose passing a JSON Web Token (JWT) for the authenticated caller to the API Gateway and validating that token with a JWT authorizer. There are multiple options for implementing an authorizer for the private API Gateway, using either a custom Lambda authorizer or Amazon Cognito.

With a custom Lambda authorizer, you can embed a SageMaker user profile name in the returned policy. This prevents any users within the corporate network from being able to send any SageMaker user profile name for creating a presigned URL that they’re not authorized to create. We use Amazon Cognito to generate our tokens and a custom Lambda authorizer to validate and return the appropriate policy. For more information, refer to Building fine-grained authorization using Amazon Cognito, API Gateway, and IAM. The Lambda authorizer uses the Amazon Cognito user name as the user profile name.

If you’re unable to use Amazon Cognito, you can develop a custom application to authenticate and pass end-user tokens to the Lambda authorizer. For more information, refer to Use API Gateway Lambda authorizers.

Configure the corporate DNS server for accessing the private API

To configure your corporate DNS server, complete the following steps:

  1. On the Amazon Elastic Compute Cloud (Amazon EC2) console, choose your on-premises DNSA EC2 instance and connect via Systems Manager Session Manager.
  2. Add a zone record in the /etc/named.conf file for resolving to the API Gateway’s DNS name via your Amazon Route 53 inbound resolver, as shown in the following code: zone “zxgua515ef.execute-api..amazonaws.com” { type forward; forward only; forwarders { 10.16.43.122; 10.16.102.163; }; };
  3. Restart the named service using the following command: sudo service named restart

Validate requesting a presigned URL from the API Gateway private API for authorized users

In a real-world scenario, you would implement a front-end interface that would pass the appropriate Authorization headers for authenticated and authorized resources using either a custom solution or leverage AWS Amplify. For brevity of this blog post, the following steps leverages Postman to quickly validate the solution we deployed actually restricts requesting the presigned URL for an internal user, unless authorized to do so.

To validate the solution with Postman, complete the following steps:

  1. Install Postman on the WINAPP EC2 instance. See instructions here
  2. Open Postman and add the access token to your Authorization header: Authorization: Bearer
  3. Modify the API Gateway URL to access it from your internal EC2 instance:
    1. Add the VPC endpoint into your API Gateway URL: https://.execute-api..amazonaws.com/dev/EMPLOYEE_ID
    2. Add the Host header with a value of your API Gateway URL: .execute-api..amazonaws.com
    3. First, change the EMPLOYEE_ID to your Amazon Cognito user and SageMaker user profile name. Make sure you receive an authorized presigned URL.
    4. Then change the EMPLOYEE_ID to a user that is not yours and make sure you receive an access failure.
  4. On the Amazon EC2 console, choose your on-premises WINAPP instance and connect via your RDP client.
  5. Open a Chrome browser and navigate to your authorized presigned URL to launch Studio.

Studio is launched over VPC endpoint with remote address as the Studio VPC endpoint IP.

If the presigned URL is accessed outside of the corporate network, the resolution fails because the IAM policy condition for the presigned URL enforces creation and access from a VPC endpoint.

Pre-Signed URL Lambda Auth Policy

Above solution created the following Auth Policy for the Lambda that generated Pre-Signed URL for accessing SageMaker Studio.

{ “Version”: “2012-10-17”, “Statement”: [ { “Condition”: { “IpAddress”: { “aws:VpcSourceIp”: “10.16.0.0/16” } }, “Action”: “sagemaker:CreatePresignedDomainUrl”, “Resource”: “arn:aws:sagemaker:::user-profile/*/*”, “Effect”: “Allow” }, { “Condition”: { “IpAddress”: { “aws:SourceIp”: “192.168.10.0/24” } }, “Action”: “sagemaker:CreatePresignedDomainUrl”, “Resource”: “arn:aws:sagemaker:::user-profile/*/*”, “Effect”: “Allow” }, { “Condition”: { “StringEquals”: { “aws:sourceVpce”: [ “vpce-sm-api-xx”, “vpce-sm-api-yy” ] } }, “Action”: “sagemaker:CreatePresignedDomainUrl”, “Resource”: “arn:aws:sagemaker:::user-profile/*/*”, “Effect”: “Allow” } ] }

The above policy enforces Studio pre-signed URL is both generated and accessed via one of these three entrypoints:

  1. aws:VpcSourceIp as your AWS VPC CIDR
  2. aws:SourceIp as your corporate network CIDR
  3. aws:sourceVpce as your SageMaker API VPC endpoints

Cleanup

To avoid incurring ongoing charges, delete the CloudFormation stacks you created. Alternatively, if you deployed the solution using SAM, you need to authenticate to the AWS account the solution was deployed and run sam delete.

Conclusion

In this post, we demonstrated how to access Studio using a private API Gateway from a corporate network using Amazon private VPC endpoints, preventing access to presigned URLs outside the corporate network, and securing the API Gateway with a JWT authorizer using Amazon Cognito and custom Lambda authorizers.

Try out with this solution and experiment integrating this with your corporate portal, and leave your feedback in the comments!

About the Authors

Ram Vittal is a machine learning solutions architect at AWS. He has over 20+ years of experience architecting and building distributed, hybrid and cloud applications. He is passionate about building secure and scalable AI/ML and Big Data solutions to help enterprise customers with their cloud adoption and optimization journey to improve their business outcomes. In his spare time, he enjoys tennis, photography, and action movies.

Jonathan Nguyen is a Shared Delivery Team Senior Security Consultant at AWS. His background is in AWS Security with a focus on Threat Detection and Incident Response. Today, he helps enterprise customers develop a comprehensive AWS Security strategy, deploy security solutions at scale, and train customers on AWS Security best practices.

Chris Childers is a Cloud Infrastructure Architect in Professional Services at AWS. He works with AWS customers to design and automate their cloud infrastructure and improve their adoption of DevOps culture and processes.



Source

Continue Reading

Amazon

Secure Amazon SageMaker Studio presigned URLs Part 1: Foundational infrastructure

You can access Amazon SageMaker Studio notebooks from the Amazon SageMaker console via AWS Identity and Access Management (IAM) authenticated federation from your identity provider (IdP), such as Okta. When a Studio user opens the notebook link, Studio validates the federated user’s IAM policy to authorize access, and generates and resolves the presigned URL for…

Published

on

By

You can access Amazon SageMaker Studio notebooks from the Amazon SageMaker console via AWS Identity and Access Management (IAM) authenticated federation from your identity provider (IdP), such as Okta. When a Studio user opens the notebook link, Studio validates the federated user’s IAM policy to authorize access, and generates and resolves the presigned URL for the user. Because the SageMaker console runs on an internet domain, this generated presigned URL is visible in the browser session. This presents an undesired threat vector for exfiltration and gaining access to customer data when proper access controls are not enforced.

Studio supports a few methods for enforcing access controls against presigned URL data exfiltration:

  • Client IP validation using the IAM policy condition aws:sourceIp
  • Client VPC validation using the IAM condition aws:sourceVpc
  • Client VPC endpoint validation using the IAM policy condition aws:sourceVpce

When you access Studio notebooks from the SageMaker console, the only available option is to use client IP validation with the IAM policy condition aws:sourceIp. However, you can use browser traffic routing products such as Zscaler to ensure scale and compliance for your workforce internet access. These traffic routing products generate their own source IP, whose IP range is not controlled by the enterprise customer. This makes it impossible for these enterprise customers to use the aws:sourceIp condition.

To use client VPC endpoint validation using the IAM policy condition aws:sourceVpce, the creation of a presigned URL needs to originate in the same customer VPC where Studio is deployed, and resolution of the presigned URL needs to happen via a Studio VPC endpoint on the customer VPC. This resolution of the presigned URL during access time for corporate network users can be accomplished using DNS forwarding rules (both in Zscaler and corporate DNS) and then into the customer VPC endpoint using an AWS Route 53 inbound resolver.

In this part, we discuss the overarching architecture for securing studio pre-signed url and demonstrate how to set up the foundational infrastructure to create and launch a Studio presigned URL through your VPC endpoint over a private network without traversing the internet. This serves as the foundational layer for preventing data exfiltration by external bad actors gaining access to Studio pre-signed URL and unauthorized or spoofed corporate user access within a corporate environment.

Solution overview

The following diagram illustrates over-arching solution architecture.

The process includes the following steps:

  1. A corporate user authenticates via their IdP, connects to their corporate portal, and opens the Studio link from the corporate portal.
  2. The corporate portal application makes a private API call using an API Gateway VPC endpoint to create a presigned URL.
  3. The API Gateway VPC endpoint “create presigned URL” call is forwarded to the Route 53 inbound resolver on the customer VPC as configured in the corporate DNS.
  4. The VPC DNS resolver resolves it to the API Gateway VPC endpoint IP. Optionally, it looks up a private hosted zone record if it exists.
  5. The API Gateway VPC endpoint routes the request via the Amazon private network to the “create presigned URL API” running in the API Gateway service account.
  6. API Gateway invokes the create-pre-signedURL private API and proxies the request to the create-pre-signedURL Lambda function.
  7. The create-pre-signedURL Lambda call is invoked via the Lambda VPC endpoint.
  8. The create-pre-signedURL function runs in the service account, retrieves authenticated user context (user ID, Region, and so on), looks up a mapping table to identify the SageMaker domain and user profile identifier, makes a sagemaker createpre-signedDomainURL API call, and generates a presigned URL. The Lambda service role has the source VPC endpoint conditions defined for the SageMaker API and Studio.
  9. The generated presigned URL is resolved over the Studio VPC endpoint.
  10. Studio validates that the presigned URL is being accessed via the customer’s VPC endpoint defined in the policy, and returns the result.
  11. The Studio notebook is returned to the user’s browser session over the corporate network without traversing the internet.

The following sections walk you through how to implement this architecture to resolve Studio presigned URLs from a corporate network using VPC endpoints. We demonstrate a complete implementation by showing the following steps:

  1. Set up the foundational architecture.
  2. Configure the corporate app server to access a SageMaker presigned URL via a VPC endpoint.
  3. Set up and launch Studio from the corporate network.

Set up the foundational architecture

In the post Access an Amazon SageMaker Studio notebook from a corporate network, we demonstrated how to resolve a presigned URL domain name for a Studio notebook from a corporate network without traversing the internet. You can follow the instructions in that post to set up the foundational architecture, and then return to this post and proceed to the next step.

Configure the corporate app server to access a SageMaker presigned URL via a VPC endpoint

To enable accessing Studio from your internet browser, we set up an on-premises app server on Windows Server on the on-premises VPC public subnet. However, the DNS queries for accessing Studio are routed through the corporate (private) network. Complete the following steps to configure routing Studio traffic through the corporate network:

  1. Connect to your on-premises Windows app server.

  2. Choose Get Password then browse and upload your private key to decrypt your password.
  3. Use an RDP client and connect to the Windows Server using your credentials.
    Resolving Studio DNS from the Windows Server command prompt results in using public DNS servers, as shown in the following screenshot.
    Now we update Windows Server to use the on-premises DNS server that we set up earlier.
  4. Navigate to Control Panel, Network and Internet, and choose Network Connections.
  5. Right-click Ethernet and choose the Properties tab.
  6. Update Windows Server to use the on-premises DNS server.
  7. Now you update your preferred DNS server with your DNS server IP.
  8. Navigate to VPC and Route Tables and choose your STUDIO-ONPREM-PUBLIC-RT route table.
  9. Add a route to 10.16.0.0/16 with the target as the peering connection that we created during the foundational architecture setup.

Set up and launch Studio from your corporate network

To set up and launch Studio, complete the following steps:

  1. Download Chrome and launch the browser on this Windows instance.
    You may need to turn off Internet Explorer Enhanced Security Configuration to allow file downloads and then enable file downloads.
  2. In your local device Chrome browser, navigate to the SageMaker console and open the Chrome developer tools Network tab.
  3. Launch the Studio app and observe the Network tab for the authtokenparameter value, which includes the generated presigned URL along with the remote server address that the URL is routed to for resolution.In this example, the remote address 100.21.12.108 is one of the public DNS server addresses to resolve the SageMaker DNS domain name d-h4cy01pxticj.studio.us-west-2.sagemaker.aws.
  4. Repeat these steps from the Amazon Elastic Compute Cloud (Amazon EC2) Windows instance that you configured as part of the foundational architecture.

We can observe that the remote address is not the public DNS IP, instead it’s the Studio VPC endpoint 10.16.42.74.

Conclusion

In this post, we demonstrated how to resolve a Studio presigned URL from a corporate network using Amazon private VPC endpoints without exposing the presigned URL resolution to the internet. This further secures your enterprise security posture for accessing Studio from a corporate network for building highly secure machine learning workloads on SageMaker. In part 2 of this series, we further extend this solution to demonstrate how to build a private API for accessing Studio with aws:sourceVPCE IAM policy validation and token authentication. Try out this solution and leave your feedback in the comments!

About the Authors

Ram Vittal is a machine learning solutions architect at AWS. He has over 20+ years of experience architecting and building distributed, hybrid and cloud applications. He is passionate about building secure and scalable AI/ML and Big Data solutions to help enterprise customers with their cloud adoption and optimization journey to improve their business outcomes. In his spare time, he enjoys tennis and photography.

Neelam Koshiya is an enterprise solution architect at AWS. Her current focus is to help enterprise customers with their cloud adoption journey for strategic business outcomes. In her spare time, she enjoys reading and being outdoors.



Source

Continue Reading

Amazon

Use a custom image to bring your own development environment to RStudio on Amazon SageMaker

RStudio on Amazon SageMaker is the industry’s first fully managed RStudio Workbench in cloud. You can quickly launch the familiar RStudio integrated development environment (IDE), and dial up and down the underlying compute resources without interrupting your work, making it easy to build machine learning (ML) and analytics solutions in R at scale. RStudio on…

Published

on

By

RStudio on Amazon SageMaker is the industry’s first fully managed RStudio Workbench in cloud. You can quickly launch the familiar RStudio integrated development environment (IDE), and dial up and down the underlying compute resources without interrupting your work, making it easy to build machine learning (ML) and analytics solutions in R at scale. RStudio on SageMaker already comes with a built-in image preconfigured with R programming and data science tools; however, you often need to customize your IDE environment. Starting today, you can bring your own custom image with packages and tools of your choice, and make them available to all the users of RStudio on SageMaker in a few clicks.

Bringing your own custom image has several benefits. You can standardize and simplify the getting started experience for data scientists and developers by providing a starter image, preconfigure the drivers required for connecting to data stores, or pre-install specialized data science software for your business domain. Furthermore, organizations that have previously hosted their own RStudio Workbench may have existing containerized environments that they want to continue to use in RStudio on SageMaker.

In this post, we share step-by-step instructions to create a custom image and bring it to RStudio on SageMaker using the AWS Management Console or AWS Command Line Interface (AWS CLI). You can get your first custom IDE environment up and running in few simple steps. For more information on the content discussed in this post, refer to Bring your own RStudio image.

Solution overview

When a data scientist starts a new session in RStudio on SageMaker, a new on-demand ML compute instance is provisioned and a container image that defines the runtime environment (operating system, libraries, R versions, and so on) is run on the ML instance. You can provide your data scientists multiple choices for the runtime environment by creating custom container images and making them available on the RStudio Workbench launcher, as shown in the following screenshot.

The following diagram describes the process to bring your custom image. First you build a custom container image from a Dockerfile and push it to a repository in Amazon Elastic Container Registry (Amazon ECR). Next, you create a SageMaker image that points to the container image in Amazon ECR, and attach that image to your SageMaker domain. This makes the custom image available for launching a new session in RStudio.

Prerequisites

To implement this solution, you must have the following prerequisites:

We provide more details on each in this section.

RStudio on SageMaker domain

If you have an existing SageMaker domain with RStudio enabled prior to April 7, 2022, you must delete and recreate the RStudioServerPro app under the user profile name domain-shared to get the latest updates for bring your own custom image capability. The AWS CLI commands are as follows. Note that this action interrupts RStudio users on SageMaker.

aws sagemaker delete-app –domain-id –app-type RStudioServerPro –app-name default –user-profile-name domain-shared aws sagemaker create-app –domain-id –app-type RStudioServerPro –app-name default –user-profile-name domain-shared

If this is your first time using RStudio on SageMaker, follow the step-by-step setup process described in Get started with RStudio on Amazon SageMaker, or run the following AWS CloudFormation template to set up your first RStudio on SageMaker domain. If you already have a working RStudio on SageMaker domain, you can skip this step.

The following RStudio on SageMaker CloudFormation template requires an RStudio license approved through AWS License Manager. For more about licensing, refer to RStudio license. Also note that only one SageMaker domain is permitted per AWS Region, so you’ll need to use an AWS account and Region that doesn’t have an existing domain.

  1. Choose Launch Stack.
    Launch stack button
    The link takes you to the us-east-1 Region, but you can change to your preferred Region.
  2. In the Specify template section, choose Next.
  3. In the Specify stack details section, for Stack name, enter a name.
  4. For Parameters, enter a SageMaker user profile name.
  5. Choose Next.
  6. In the Configure stack options section, choose Next.
  7. In the Review section, select I acknowledge that AWS CloudFormation might create IAM resources and choose Next.
  8. When the stack status changes to CREATE_COMPLETE, go to the Control Panel on the SageMaker console to find the domain and the new user.

IAM policies to interact with Amazon ECR

To interact with your private Amazon ECR repositories, you need the following IAM permissions in the IAM user or role you’ll use to build and push Docker images:

{ “Version”:”2012-10-17″, “Statement”:[ { “Sid”: “VisualEditor0”, “Effect”:”Allow”, “Action”:[ “ecr:CreateRepository”, “ecr:BatchGetImage”, “ecr:CompleteLayerUpload”, “ecr:DescribeImages”, “ecr:DescribeRepositories”, “ecr:UploadLayerPart”, “ecr:ListImages”, “ecr:InitiateLayerUpload”, “ecr:BatchCheckLayerAvailability”, “ecr:PutImage” ], “Resource”: “*” } ] }

To initially build from a public Amazon ECR image as shown in this post, you need to attach the AWS-managed AmazonElasticContainerRegistryPublicReadOnly policy to your IAM user or role as well.

To build a Docker container image, you can use either a local Docker client or the SageMaker Docker Build CLI tool from a terminal within RStudio on SageMaker. For the latter, follow the prerequisites in Using the Amazon SageMaker Studio Image Build CLI to build container images from your Studio notebooks to set up the IAM permissions and CLI tool.

AWS CLI versions

There are minimum version requirements for the AWS CLI tool to run the commands mentioned in this post. Make sure to upgrade AWS CLI on your terminal of choice:

  • AWS CLI v1 >= 1.23.6
  • AWS CLI v2 >= 2.6.2

Prepare a Dockerfile

You can customize your runtime environment in RStudio in a Dockerfile. Because the customization depends on your use case and requirements, we show you the essentials and the most common customizations in this example. You can download the full sample Dockerfile.

Install RStudio Workbench session components

The most important software to install in your custom container image is RStudio Workbench. We download from the public S3 bucket hosted by RStudio PBC. There are many version releases and OS distributions for use. The version of the installation needs to be compatible with the RStudio Workbench version used in RStudio on SageMaker, which is 1.4.1717-3 at the time of writing. The OS (argument OS in the following snippet) needs to match the base OS used in the container image. In our sample Dockerfile, the base image we use is Amazon Linux 2 from an AWS-managed public Amazon ECR repository. The compatible RStudio Workbench OS is centos7.

FROM public.ecr.aws/amazonlinux/amazonlinux … ARG RSW_VERSION=1.4.1717-3 ARG RSW_NAME=rstudio-workbench-rhel ARG OS=centos7 ARG RSW_DOWNLOAD_URL=https://s3.amazonaws.com/rstudio-ide-build/server/${OS}/x86_64 RUN RSW_VERSION_URL=`echo -n “${RSW_VERSION}” | sed ‘s/+/-/g’` && curl -o rstudio-workbench.rpm ${RSW_DOWNLOAD_URL}/${RSW_NAME}-${RSW_VERSION_URL}-x86_64.rpm && yum install -y rstudio-workbench.rpm

You can find all the OS release options with the following command:

aws s3 ls s3://rstudio-ide-build/server/

Install R (and versions of R)

The runtime for your custom RStudio container image needs at least one version of R. We can first install a version of R and make it the default R by creating soft links to /usr/local/bin/:

# Install main R version ARG R_VERSION=4.1.3 RUN curl -O https://cdn.rstudio.com/r/centos-7/pkgs/R-${R_VERSION}-1-1.x86_64.rpm && yum install -y R-${R_VERSION}-1-1.x86_64.rpm && yum clean all && rm -rf R-${R_VERSION}-1-1.x86_64.rpm RUN ln -s /opt/R/${R_VERSION}/bin/R /usr/local/bin/R && ln -s /opt/R/${R_VERSION}/bin/Rscript /usr/local/bin/Rscript

Data scientists often need multiple versions of R so that they can easily switch between projects and code base. RStudio on SageMaker supports easy switching between R versions, as shown in the following screenshot.

RStudio on SageMaker automatically scans and discovers versions of R in the following directories:

/usr/lib/R /usr/lib64/R /usr/local/lib/R /usr/local/lib64/R /opt/local/lib/R /opt/local/lib64/R /opt/R/* /opt/local/R/*

We can install more versions in the container image, as shown in the following snippet. They will be installed in /opt/R/.

RUN curl -O https://cdn.rstudio.com/r/centos-7/pkgs/R-4.0.5-1-1.x86_64.rpm && yum install -y R-4.0.5-1-1.x86_64.rpm && yum clean all && rm -rf R-4.0.5-1-1.x86_64.rpm RUN curl -O https://cdn.rstudio.com/r/centos-7/pkgs/R-3.6.3-1-1.x86_64.rpm && yum install -y R-3.6.3-1-1.x86_64.rpm && yum clean all && rm -rf R-3.6.3-1-1.x86_64.rpm RUN curl -O https://cdn.rstudio.com/r/centos-7/pkgs/R-3.5.3-1-1.x86_64.rpm && yum install -y R-3.5.3-1-1.x86_64.rpm && yum clean all && rm -rf R-3.5.3-1-1.x86_64.rpm

Install RStudio Professional Drivers

Data scientists often need to access data from sources such as Amazon Athena and Amazon Redshift within RStudio on SageMaker. You can do so using RStudio Professional Drivers and RStudio Connections. Make sure you install the relevant libraries and drivers as shown in the following snippet:

# Install RStudio Professional Drivers —————————————-# RUN yum update -y && yum install -y unixODBC unixODBC-devel && yum clean all ARG DRIVERS_VERSION=2021.10.0-1 RUN curl -O https://drivers.rstudio.org/7C152C12/installer/rstudio-drivers-${DRIVERS_VERSION}.el7.x86_64.rpm && yum install -y rstudio-drivers-${DRIVERS_VERSION}.el7.x86_64.rpm && yum clean all && rm -f rstudio-drivers-${DRIVERS_VERSION}.el7.x86_64.rpm && cp /opt/rstudio-drivers/odbcinst.ini.sample /etc/odbcinst.ini RUN /opt/R/${R_VERSION}/bin/R -e ‘install.packages(“odbc”, repos=”https://packagemanager.rstudio.com/cran/__linux__/centos7/latest”)’

Install custom libraries

You can also install additional R and Python libraries so that data scientists don’t need to install them on the fly:

RUN /opt/R/${R_VERSION}/bin/R -e “install.packages(c(‘reticulate’, ‘readr’, ‘curl’, ‘ggplot2’, ‘dplyr’, ‘stringr’, ‘fable’, ‘tsibble’, ‘dplyr’, ‘feasts’, ‘remotes’, ‘urca’, ‘sodium’, ‘plumber’, ‘jsonlite’), repos=’https://packagemanager.rstudio.com/cran/__linux__/centos7/latest’)” RUN /opt/python/${PYTHON_VERSION}/bin/pip install –upgrade ‘boto3>1.0<2.0' 'awscli>1.0<2.0' 'sagemaker[local]<3' 'sagemaker-studio-image-build' 'numpy'

When you’ve finished your customization in a Dockerfile, it’s time to build a container image and push it to Amazon ECR.

Build and push to Amazon ECR

You can build a container image from the Dockerfile from a terminal where the Docker engine is installed, such as your local terminal or AWS Cloud9. If you’re building it from a terminal within RStudio on SageMaker, you can use SageMaker Studio Image Build. We demonstrate the steps for both approaches.

In a local terminal where the Docker engine is present, you can run the following commands from where the Dockerfile is. You can use the sample script create-and-update-image.sh.

IMAGE_NAME=r-4.1.3-rstudio-1.4.1717-3 # the name for SageMaker Image REPO=rstudio-custom # ECR repository name TAG=$IMAGE_NAME # login to your Amazon ECR aws ecr get-login-password | docker login –username AWS –password-stdin ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com # create a repo aws ecr create-repository –repository-name ${REPO} # build a docker image and push it to the repo docker build . -t ${REPO}:${TAG} -t ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/${REPO}:${TAG} docker push ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/${REPO}:${TAG}

In a terminal on RStudio on SageMaker, run the following commands:

pip install sagemaker-studio-image-build sm-docker build . –repository ${REPO}:${IMAGE_NAME}

After these commands, you have a repository and a Docker container image in Amazon ECR for our next step, in which we attach the container image for use in RStudio on SageMaker. Note the image URI in Amazon ECR .dkr.ecr..amazonaws.com/: for later use.

Update RStudio on SageMaker through the console

RStudio on SageMaker allows runtime customization through the use of a custom SageMaker image. A SageMaker image is a holder for a set of SageMaker image versions. Each image version represents a container image that is compatible with RStudio on SageMaker and stored in an Amazon ECR repository. To make a custom SageMaker image available to all RStudio users within a domain, you can attach the image to the domain following the steps in this section.

  1. On the SageMaker console, navigate to the Custom SageMaker Studio images attached to domain page, and choose Attach image.
  2. Select New image, and enter your Amazon ECR image URI.
  3. Choose Next.
  4. In the Image properties section, provide an Image name (required), Image display name (optional), Description (optional), IAM role, and tags.
    The image display name, if provided, is shown in the session launcher in RStudio on SageMaker. If the Image display name field is left empty, the image name is shown in RStudio on SageMaker instead.
  5. Leave EFS mount path and Advanced configuration (User ID and Group ID) as default because RStudio on SageMaker manages the configuration for us.
  6. In the Image type section, select RStudio image.
  7. Choose Submit.

You can now see a new entry in the list. It’s worth noting that, with the introduction of the support of custom RStudio images, you can see a new Usage type column in the table to denote whether an image is an RStudio image or an Amazon SageMaker Studio image.

It may take up to 5–10 minutes for the custom images to be available in the session launcher UI. You can then launch a new R session in RStudio on SageMaker with your custom images.

Over time, you may want to retire old and outdated images. To remove the custom images from the list of custom images in RStudio, select the images in the list and choose Detach.

Choose Detach again to confirm.

Update RStudio on SageMaker via the AWS CLI

The following sections describe the steps to create a SageMaker image and attach it for use in RStudio on SageMaker on the SageMaker console and using the AWS CLI. You can use the sample script create-and-update-image.sh.

Create the SageMaker image and image version

The first step is to create a SageMaker image from the custom container image in Amazon ECR by running the following two commands:

ROLE_ARN= DISPLAY_NAME=RSession-r-4.1.3-rstudio-1.4.1717-3 aws sagemaker create-image –image-name ${IMAGE_NAME} –display-name ${DISPLAY_NAME} –role-arn ${ROLE_ARN} aws sagemaker create-image-version –image-name ${IMAGE_NAME} –base-image “${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/${REPO}:${TAG}”

Note that the custom image displayed in the session launcher in RStudio on SageMaker is determined by the input of –display-name. If the optional display name is not provided, the input of –image-name is used instead. Also note that the IAM role allows SageMaker to attach an Amazon ECR image to RStudio on SageMaker.

Create an AppImageConfig

In addition to a SageMaker image, which captures the image URI from Amazon ECR, an app image configuration (AppImageConfig) is required for use in a SageMaker domain. We simplify the configuration for an RSessionApp image so we can just create a placeholder configuration with the following command:

IMAGE_CONFIG_NAME=r-4-1-3-rstudio-1-4-1717-3 aws sagemaker create-app-image-config –app-image-config-name ${IMAGE_CONFIG_NAME}

Attach to a SageMaker domain

With the SageMaker image and the app image configuration created, we’re ready to attach the custom container image to the SageMaker domain. To make a custom SageMaker image available to all RStudio users within a domain, you attach the image to the domain as a default user setting. All existing users and any new users will be able to use the custom image.

For better readability, we place the following configuration into the JSON file default-user-settings.json:

“DefaultUserSettings”: { “RSessionAppSettings”: { “CustomImages”: [ { “ImageName”: “r-4.1.3-rstudio-2022”, “AppImageConfigName”: “r-4-1-3-rstudio-2022” }, { “ImageName”: “r-4.1.3-rstudio-1.4.1717-3”, “AppImageConfigName”: “r-4-1-3-rstudio-1-4-1717-3” } ] } } }

In this file, we can specify the image and AppImageConfig name pairs in a list in DefaultUserSettings.RSessionAppSettings.CustomImages. This preceding snippet assumes two custom images are being created.

Then run the following command to update the SageMaker domain:

aws sagemaker update-domain –domain-id –cli-input-json file://default-user-settings.json

After you update the domaim, it may take up to 5–10 minutes for the custom images to be available in the session launcher UI. You can then launch a new R session in RStudio on SageMaker with your custom images.

Detach images from a SageMaker domain

You can detach images simply by removing the ImageName and AppImageConfigName pairs from default-user-settings.json and updating the domain.

For example, updating the domain with the following default-user-settings.json removes r-4.1.3-rstudio-2022 from the R session launching UI and leaves r-4.1.3-rstudio-1.4.1717-3 as the only custom image available to all users in a domain:

{ “DefaultUserSettings”: { “RSessionAppSettings”: { “CustomImages”: [ { “ImageName”: “r-4.1.3-rstudio-1.4.1717-3”, “AppImageConfigName”: “r-4-1-3-rstudio-1-4-1717-3” } ] } } }

Clean up

To safely remove images and resources in the SageMaker domain, complete the following steps in Clean up image resources.

To safely remove the RStudio on SageMaker and the SageMaker domain, complete the following steps in Delete an Amazon SageMaker Domain to delete any RSessionGateway app, user profile and the domain.

To safely remove images and repositories in Amazon ECR, complete the following steps in Deleting an image.

Finally, to delete the CloudFormation template:

  1. On the AWS CloudFormation console, choose Stacks.
  2. Select the stack you deployed for this solution.
  3. Choose Delete.

Conclusion

RStudio on SageMaker makes it simple for data scientists to build ML and analytic solutions in R at scale, and for administrators to manage a robust data science environment for their developers. Data scientists want to customize the environment so that they can use the right libraries for the right job and achieve the desired reproducibility for each ML project. Administrators need to standardize the data science environment for regulatory and security reasons. You can now create custom container images that meet your organizational requirements and allow data scientists to use them in RStudio on SageMaker.

We encourage you to try it out. Happy developing!

About the Authors

Michael Hsieh is a Senior AI/ML Specialist Solutions Architect. He works with customers to advance their ML journey with a combination of AWS ML offerings and his ML domain knowledge. As a Seattle transplant, he loves exploring the great Mother Nature the city has to offer, such as the hiking trails, scenery kayaking in the SLU, and the sunset at Shilshole Bay.

Declan Kelly is a Software Engineer on the Amazon SageMaker Studio team. He has been working on Amazon SageMaker Studio since its launch at AWS re:Invent 2019. Outside of work, he enjoys hiking and climbing.

Sean MorganSean Morgan is an AI/ML Solutions Architect at AWS. He has experience in the semiconductor and academic research fields, and uses his experience to help customers reach their goals on AWS. In his free time, Sean is an active open-source contributor and maintainer, and is the special interest group lead for TensorFlow Add-ons.



Source

Continue Reading

Trending

Copyright © 2021 Today's Digital.