We launched Amazon Simple Storage Service (Amazon S3) sixteen years ago today! As I often told my audiences in the early days, I wanted them to think big thoughts and dream big dreams! Looking back, I think it is safe to say that the launch of S3 empowered them to do just that, and initiated…
As I often told my audiences in the early days, I wanted them to think big thoughts and dream big dreams! Looking back, I think it is safe to say that the launch of S3 empowered them to do just that, and initiated a wave of innovation that continues to this day.
Bigger, Busier, and more Cost-Effective Our customers count on Amazon S3 to provide them with reliable and highly durable object storage that scales to meet their needs, while growing more and more cost-effective over time. We’ve met those needs and many others; here are some new metrics that prove my point:
Object Storage – Amazon S3 now holds more than 200 trillion (2 x 1014) objects. That’s almost 29,000 objects for each resident of planet Earth. Counting at one object per second, it would take 6.342 million years to reach this number! According to Ethan Siegel, there are about 2 trillion galaxies in the visible Universe, so that’s 100 objects per galaxy! Shortly after the 2006 launch of S3, I was happy to announce the then-impressive metric of 800 million stored objects, so the object count has grown by a factor of 250,000 in less than 16 years.
Request Rate – Amazon S3 now averages over 100 million requests per second.
Cost Effective – Over time we have added multiple storage classes to S3 in order to optimize cost and performance for many different workloads. For example, AWS customers are making great use of Amazon S3 Intelligent Tiering (the only cloud storage class that delivers automatic storage cost savings when data access patterns change), and have saved more than $250 million in storage costs as compared to Amazon S3 Standard. When I first wrote about this storage class in 2018, I said:
In order to make it easier for you to take advantage of S3 without having to develop a deep understanding of your access patterns, we are launching a new storage class, S3 Intelligent-Tiering.
Customer Innovation As you can see from the metrics above, our customers use S3 to store and protect vast amounts of data in support of an equally vast number of use cases and applications. Here are just a few of the ways that our customers are innovating:
NASCAR – After spending 15 years collecting video, image, and audio assets representing over 70 years of motor sports history, NASCAR built a media library that encompassed over 8,600 LTO 6 tapes and a few thousand LTO 4 tapes, with a growth rate of between 1.5 PB and 2 PB per year. Over the course of 18 months they migrated all of this content (a total of 15 PB) to AWS, making use of the Amazon S3 Standard, Amazon S3 Glacier Flexible Retrieval, and Amazon S3 Glacier Deep Archive storage classes. To learn more about how they migrated this massive and invaluable archive, read Modernizing NASCAR’s multi-PB media archive at speed with AWS Storage.
Electronic Arts – This game maker’s core telemetry systems handle tens of petabytes of data, tens of thousands of tables, and over 2 billion objects. As their games became more popular and the volume of data grew, they were facing challenges around data growth, cost management, retention, and data usage. In a series of updates, they moved archival data to Amazon S3 Glacier Deep Archive, implemented tag-driven retention management, and implemented Amazon S3 Intelligent-Tiering. They have reduced their costs and made their data assets more accessible; read Electronic Arts optimizes storage costs and operations using Amazon S3 Intelligent-Tiering and S3 Glacier to learn more. NRGene / CRISPR-IL – This team came together to build a best-in-class gene-editing prediction platform. CRISPR ( A Crack In Creation is a great introduction) is a very new and very precise way to edit genes and effect changes to an organism’s genetic makeup. The CRISPR-IL consortium is built around an iterative learning process that allows researchers to send results to a predictive engine that helps to shape the next round of experiments. As described in A gene-editing prediction engine with iterative learning cycles built on AWS, the team identified five key challenges and then used AWS to build GoGenome, a web service that performs predictions and delivers the results to users. GoGenome stores over 20 terabytes of raw sequencing data, and hundreds of millions of feature vectors, making use of Amazon S3 and other AWS storage services as the foundation of their data lake.
Designed for system administrators, engineers, developers, and architects, our sessions will bring you the latest and greatest information on security, backup, archiving, certification, and more. Join us at 9:30 AM PT on Twitch for Kevin Miller’s kickoff keynote, and stick around for the entire day to learn a lot more about how you can put Amazon S3 to use in your applications. See you there!
How Kyndryl integrated ServiceNow and Amazon Q Business
In this post, we show you how Kyndryl integrated Amazon Q Business with ServiceNow in a few simple steps. You will learn how to configure Amazon Q Business and ServiceNow, how to create a generative AI plugin for your ServiceNow incidents, and how to test and interact with ServiceNow using the Amazon Q Business web…
In this post, we show you how Kyndryl integrated Amazon Q Business with ServiceNow in a few simple steps. You will learn how to configure Amazon Q Business and ServiceNow, how to create a generative AI plugin for your ServiceNow incidents, and how to test and interact with ServiceNow using the Amazon Q Business web experience. This post will help you enhance your ServiceNow experience with Amazon Q Business and enjoy the benefits of a generative AI–powered interface.
Mitigating risk: AWS backbone network traffic prediction using GraphStorm
In this post, we show how you can use our enterprise graph machine learning (GML) framework GraphStorm to solve prediction challenges on large-scale complex networks inspired by our practices of exploring GML to mitigate the AWS backbone network congestion risk. Source
In this post, we show how you can use our enterprise graph machine learning (GML) framework GraphStorm to solve prediction challenges on large-scale complex networks inspired by our practices of exploring GML to mitigate the AWS backbone network congestion risk.
HCLTech’s AWS powered AutoWise Companion: A seamless experience for informed automotive buyer decisions with data-driven design
This post introduces HCLTech’s AutoWise Companion, a transformative generative AI solution designed to enhance customers’ vehicle purchasing journey. In this post, we analyze the current industry challenges and guide readers through the AutoWise Companion solution functional flow and architecture design using built-in AWS services and open source tools. Additionally, we discuss the design from security…
This post introduces HCLTech’s AutoWise Companion, a transformative generative AI solution designed to enhance customers’ vehicle purchasing journey. In this post, we analyze the current industry challenges and guide readers through the AutoWise Companion solution functional flow and architecture design using built-in AWS services and open source tools. Additionally, we discuss the design from security and responsible AI perspectives, demonstrating how you can apply this solution to a wider range of industry scenarios.