Connect with us

Amazon

Save the date: Join AWS at NVIDIA GTC, September 19–22

Register free for NVIDIA GTC to learn from experts on how AI and the evolution of the 3D internet are profoundly impacting industries—and society as a whole. We have prepared several AWS sessions to give you guidance on how to use AWS services powered by NVIDIA technology to meet your goals. Amazon Elastic Compute Cloud…

Published

on

Register free for NVIDIA GTC to learn from experts on how AI and the evolution of the 3D internet are profoundly impacting industries—and society as a whole. We have prepared several AWS sessions to give you guidance on how to use AWS services powered by NVIDIA technology to meet your goals. Amazon Elastic Compute Cloud (Amazon EC2) instances powered by NVIDIA GPUs deliver the scalable performance needed for fast machine learning (ML) training, cost-effective ML inference, flexible remote virtual workstations, and powerful HPC computations.

AWS is a Global Diamond Sponsor of the conference.

Available sessions

Scaling Deep Learning Training on Amazon EC2 using PyTorch (Presented by Amazon Web Services) [A41454]
As deep learning models grow in size and complexity, they need to be trained using distributed architectures. In this session, we review the details of the PyTorch fully sharded data parallel (FSDP) algorithm, which enables you to train deep learning models at scale.

  • Tuesday, September 20, at 2:00 PM – 2:50 PM PDT
  • Speakers: Shubha Kumbadakone, Senior GTM Specialist, AWS ML, AWS; and Less Wright, Partner Engineer, Meta

A Developer’s Guide to Choosing the Right GPUs for Deep Learning (Presented by Amazon Web Services) [A41463]
As a deep learning developer or data scientist, choosing the right GPU for deep learning can be challenging. On AWS, you can choose from multiple NVIDIA GPU-based EC2 compute instances depending on your training and deployment requirements. We dive into how to choose the right instance for your needs in this session.

  • Available on demand
  • Speaker: Shashank Prasanna, Senior Developer Advocate, AI/ML, AWS

Real-time Design in the Cloud with NVIDIA Omniverse on Amazon EC2 (Presented by Amazon Web Services) [A4631]
In this session, we discuss how, by deploying NVIDIA Omniverse Nucleus—the Universal Scene Description (USD) collaboration engine—on EC2 On-Demand compute instances, Omniverse is able to scale to meet the demands of global teams.

  • Available on demand
  • Speaker: Kellan Cartledge, Spatial Computing Solutions Architect, AWS

5G Killer App: Making Augmented and Virtual Reality a Reality [A41234]
Extended reality (XR), which comprises augmented, virtual, and mixed realities, is consistently envisioned as one of the key killer apps for 5G, because XR requires ultra-low latency and large bandwidths to deliver wired-equivalent experiences for users. In this session, we share how Verizon, AWS, and Ericsson are collaborating to combine 5G and XR technology with NVIDIA GPUs, RTX vWS, and CloudXR to build the infrastructure for commercial XR services across a variety of industries.

  • Tuesday, September 20, at 1:00 PM – 1:50 PM PDT
  • Speakers: David Randle, Global Head of GTM for Spatial Computing, AWS; Veronica Yip, Product Manager and Product Marketing Manager, NVIDIA; Balaji Raghavachari, Executive Director, Tech Strategy, Verizon; and Peter Linder, Head of 5G Marketing, North America, Ericsson

Accelerate and Scale GNNs with Deep Graph Library and GPUs [A41386]
Graphs play important roles in many applications, including drug discovery, recommender systems, fraud detection, and cybersecurity. Graph neural networks (GNNs) are the current state-of-the-art method for computing graph embeddings in these applications. This session discusses the recent improvements of the Deep Graph Library on NVIDIA GPUs in the DGL 0.9 release cycle.

  • Wednesday, September 21, at 2:00 PM – 2:50 PM PDT
  • Speaker: Da Zheng, Senior Applied Scientist, AWS
Register for free for access to this content, and be sure to visit our sponsor page to learn more about AWS solutions powered by NVIDIA. See you there!

About the author

Jeremy Singh is a Partner Marketing Manager for storage partners within the AWS Partner Network. In his spare time, he enjoys traveling, going to the beach, and spending time with his dog Bolin.



Source

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Amazon

Reducing hallucinations in LLM agents with a verified semantic cache using Amazon Bedrock Knowledge Bases

This post introduces a solution to reduce hallucinations in Large Language Models (LLMs) by implementing a verified semantic cache using Amazon Bedrock Knowledge Bases, which checks if user questions match curated and verified responses before generating new answers. The solution combines the flexibility of LLMs with reliable, verified answers to improve response accuracy, reduce latency,…

Published

on

By

This post introduces a solution to reduce hallucinations in Large Language Models (LLMs) by implementing a verified semantic cache using Amazon Bedrock Knowledge Bases, which checks if user questions match curated and verified responses before generating new answers. The solution combines the flexibility of LLMs with reliable, verified answers to improve response accuracy, reduce latency, and lower costs while preventing potential misinformation in critical domains such as healthcare, finance, and legal services.

Source

Continue Reading

Amazon

Orchestrate an intelligent document processing workflow using tools in Amazon Bedrock

This intelligent document processing solution uses Amazon Bedrock FMs to orchestrate a sophisticated workflow for handling multi-page healthcare documents with mixed content types. The solution uses the FM’s tool use capabilities, accessed through the Amazon Bedrock Converse API. This enables the FMs to not just process text, but to actively engage with various external tools…

Published

on

By

This intelligent document processing solution uses Amazon Bedrock FMs to orchestrate a sophisticated workflow for handling multi-page healthcare documents with mixed content types. The solution uses the FM’s tool use capabilities, accessed through the Amazon Bedrock Converse API. This enables the FMs to not just process text, but to actively engage with various external tools and APIs to perform complex document analysis tasks.

Source

Continue Reading

Amazon

AWS and DXC collaborate to deliver customizable, near real-time voice-to-voice translation capabilities for Amazon Connect

In this post, we discuss how AWS and DXC used Amazon Connect and other AWS AI services to deliver near real-time V2V translation capabilities. Source

Published

on

By

In this post, we discuss how AWS and DXC used Amazon Connect and other AWS AI services to deliver near real-time V2V translation capabilities.

Source

Continue Reading

Trending

Copyright © 2021 Today's Digital.